Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Microwave devices with helically corrugated waveguides

Bratman, V.L. and Cross, Adrian and Denisov, G.G. and Phelps, Alan and Samsonov, S.V. (2005) Microwave devices with helically corrugated waveguides. In: Quasi-optical control of intense microwave transmission. NATO science series, series II: mathematics, physics and chemistry . Springer, Dordrecht, pp. 105-114. ISBN 9781402036361

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Helical corrugation of the inner surface of an oversized circular waveguide provides very flexible dispersion characteristic of an eigenwave. Under certain corrugation parameters, the eigenwave can possess a sufficiently high and almost constant group velocity over a wide frequency band in the region of close-to-zero axial wavenumber. This makes it attractive for broadband gyro-TWTs and gyro-BWOs with reduced sensitivity to electron velocity spread. Another set of parameters ensures an operating wave with a strong frequency dependant group velocity over a frequency band, which is sufficiently separated from any cutoffs. Such wave dispersion is favourable for frequency-chirped pulse compression at very high power levels. An overview of experiments on the helical-waveguide gyro-devices and the pulse compressor is presented.