Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Probing the out-of-plane optical response of plasmonic nanostructures using spectroscopic ellipsometry

Verre, R. and Fleischer, K. and Smith, C. and McAlinden, N. and McGilp, J. F. and Shvets, I. V. (2011) Probing the out-of-plane optical response of plasmonic nanostructures using spectroscopic ellipsometry. Physical Review B, 84 (8). -. ISSN 1098-0121

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

A simplified approach to investigate the out-of-plane response of plasmonic nanostructures using spectroscopic ellipsometry (SE) is presented. One-dimensional self-assembled arrays of Ag nanoparticles (NP's) were grown on stepped Al2O3(0001), in ultrahigh vacuum, using deposition at a glancing angle. The SE response was measured with the plane of incidence aligned along, and across, the surface steps. From the raw data, an anisotropic surface excess function (ASEF) can be extracted, whose properties depend only on the dielectric function of the NP layer. Three resonances are clearly seen in the ASEF: two in-plane resonances, which correspond to the resonances measured using normal incidence reflection anisotropy spectroscopy, and the out-of-plane resonance. A dipole model is used to simulate the optical response of the NP layer, where the presence of the out-of-plane resonance provides an important additional constraint in developing the model.