Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Arsenic speciation in the field

Torrance, Keith and Keenan, Helen and Munk, LeeAnn and Hagedorn, Birgit (2011) Arsenic speciation in the field. In: Emerging Analytical Professionals RSC, 2011-05-06 - 2011-05-08. (Unpublished)

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Arsenic contamination of drinking water is widely recognised as a major public health concern, with global hotspots in Bangladesh, India, Argentina and China. This is not solely a problem that affects developing countries; it is estimated that over 13 million consumers in North America, primarily in western states, rely on groundwater with an arsenic content of greater than 10µg/L (USEPA) and require treatment. Alaska is typical of many western states in that arsenic contamination of groundwater is both natural and anthropogenic in origin. The latter is directly attributable to metal mining operations that expose sulphide minerals, especially arsenopyrite (FeAsS), to air oxidation and decomposition, with subsequent release of toxic metals. Arsenic is particularly mobile in aqueous environments because it exists as various anionic species in trivalent and pentavalent oxidation states. Further, the toxic trivalent species H3AsO3 has neutral charge in acidic conditions and therefore is not readily absorbed by clay minerals. Consequently, the oxidation state of arsenic in water samples is of great importance in predicting toxicity and mobility. Preservation of arsenic speciation is difficult and a number of different procedures have been proposed, but there is always some possibility of species transformation between the sample site and the laboratory. Separation of arsenic species at the sampling point is therefore an attractive alternative.