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Adler synchronization of spatial laser solitons pinned by defects
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Defects due to growth fluctuations in broad-area semiconductor lasers induce pinning and fre-
quency shifts of spatial laser solitons. The effects of defects on the interaction of two solitons are
considered in lasers with frequency-selective feedback both theoretically and experimentally. We
demonstrate frequency and phase synchronization of paired laser solitons as their detuning is var-
ied. In both theory and experiment the locking behavior is well described by the Adler model for
the synchronization of coupled oscillators.
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Spontaneous breaking of the translational symmetry
in spatio-temporal systems leads to the formation of
nonlinear structures such as patterns, solitons, oscillons,
vortices and disorder [1]. Laser cavity solitons (LCS)
are nonlinear self-localized dissipative states that possess
both translational and phase invariance. The interac-
tion of LCS leads to phase-locked bound states with well
defined phases and separations as predicted for example
in the cubic-quintic Complex Ginzburg Landau (CGL)
equations for temporal solitons in mode-locked lasers [2–
8] and in models of lasers with saturable absorbers for
the spatial case [9–11]. Corresponding bound states have
been observed experimentally in fiber lasers [12, 13].

Spatial LCS have recently been observed in
semiconductor-based micro-resonators with either
frequency-selective feedback [14, 15] or saturable absorp-
tion [16, 17]. For temporal LCS, such as those arising in
fiber lasers, the effects of longitudinal inhomogeneities
are washed out by the propagation dynamics along the
cavity axis, and every soliton sees the same material
characteristics. Spatial LCS in real systems are usually
pinned by defects resulting from fluctuations during the
epitaxial growth process [15, 18]. Besides fixing the
position, these defects induce a shift in the LCS natural
frequency. The frequency shift depends on the char-
acteristics of the defect itself and typically is different
for each of them. This diversity in natural frequencies
is a critical ingredient for the description of spatial
LCS in real systems. Therefore, despite being suitable
for temporal LCS, theoretical studies considering the
interaction of identical LCS arising on a homogeneous
background are not adequate to describe the dynamics of
coupled spatial LCS. Here we show that the interaction
of pinned LCS with different intrinsic frequencies can
be suitably described by the Adler locking mechanism
[19]. In particular we show that the coupling, if strong
enough, can overcome the natural disorder leading to
a synchronous regime characterized by emission at a
common frequency with a phase difference that has a
precise dependence on the frequency difference. The
Adler locking mechanism has relevance in biological

clocks, chemical reactions, mechanical and electrical
oscillators [20]. In optics frequency locking of the Adler
type was first observed in lasers with injected signals [21]
with more recent generalizations to coupled lasers [22],
the spatio-temporal domain [23], quantum dot lasers
[24] and frequency without phase lockings [25].
We first present frequency locking and phase synchro-

nization of spatial LCS pinned by defects in a general
CGL model with frequency-selective feedback where spa-
tial variations of the cavity tuning parameter are used
to simulate the presence of background defects. To show
universality, defect induced Adler synchronization is then
demonstrated in a model closer to the experimental real-
ization where the saturable carrier dynamics are included
[26]. Finally, the phenomenon is demonstrated exper-
imentally in a Vertical Cavity Surface Emitting Laser
(VCSEL) with an external Bragg grating that provides
frequency-selective feedback [15].
The interaction and locking phenomena which we ob-

serve in a semiconductor laser with feedback are well cap-
tured in a simple generic model consisting of a cubic CGL
equation where solitons are stabilized by coupling to a
linear filter equation [27]:

∂tE = g0E + g2|E|2E − i∂2

xE + F + in(x)E,

∂tF = −λF + σE ,
(1)

where E(x) is the intra-cavity field and F (x) is the fil-
tered feedback field. Note that the linear feedback equa-
tion breaks the Galilean invariance of the cubic CGL
equation. For clarity reasons, we focus here on one trans-
verse spatial dimension. The time and space coordinates
(t, x) are scaled to 1 ns and 40 µm, respectively, so that
g0, describing linear gain and detuning, and g2, describ-
ing nonlinear gain and dispersion, are dimensionless. We
consider pure diffraction which is appropriate for VCSEL
systems. The real function n(x) describes spatial varia-
tions of the cavity tuning due to background defects that
predominantly perturb the material refractive index. In
the second equation of (1) σ is the feedback strength, λ its
bandwidth, and we have implicitly set our reference fre-
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quency to the peak of the filter response. System (1) has
exact solutions corresponding to stable single-frequency
chirped-sech solitons [27]. Small variations of n(x) lead to
pinning and small changes in the soliton frequency. The
interaction of spatially separated pinned solitons can lead
to their locking which is our main interest here.

We consider parameter values given by: g0 = −4+28i,
g2 = −96 − 48i, λ = 2.71, σ = 162.6, for which, in
the ideal case with translational invariance, n(x) = 0,
system (1) has stable solitons with two free parameters:
location and phase. The interaction of two such solitons
makes them spiral slowly to fixed relative distances L
and a phase difference Φ = φ2−φ1 = π/2 unless merging
takes place. Φ equal to zero and π are also possible but
correspond to saddles that are either phase or distance
unstable. Analytically the attainment of a bound state
reduces to the analysis of two transcendental equations
in the (L,Φ) phase space. The situation is very similar
to that described in [3, 6, 9] for bound solitons.

We now consider the case where the interaction takes
place between pinned solitons since the translational in-
variance is broken by the pinning potential n(x) which is
equal to zero everywhere except in the intervals xj−W <
x < xj +W where

n(x) =
−nj

2

[

cos

(

π(x − xj)

W

)

+ 1

]

(2)

with j = 1, 2. The pinning potential is a smooth function
of x and the width 2W of the defects is chosen to be close
to the width at half maximum of the LCS to help a quick
convergence of the soliton distance to the final defect
separation. Differences between the defects are described
by the depths n1 and n2 of the pinning potential. The
values of nj considered here preserve the structure of the
LCS with only its frequency ωj shifted.

If the defects are close enough in space, the soliton in-
teraction locks their frequencies and phases to common
values that depend on the difference between the defect
depths. The synchronization dynamics of the phase dif-
ference Φ between the pinned solitons relaxes to well de-
termined stationary values that depends on the defect de-
tuning parameter ∆ω = ω2 − ω1 generated by the choice
of n1 and n2 values. The dependence of the station-
ary phase difference Φ on the detuning ∆ω for numerical
simulations of (1) is shown in Fig. 1 for |x2 − x1| = 1.5
space units. There are a maximal and a minimal de-
tuning ±∆ωth below and above which synchronization
does not take place. Very similar results have been ob-
tained from numerical simulations of LCS in models of
VCSELs with frequency-selective feedback that include
the dynamics of the carriers and more realistic values of
the linewidth enhancement factor [26] (see Fig. 1).

The archetypical equation describing synchronization
between two coupled oscillators is the Adler equation
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FIG. 1: (Color online) Locked phase differences Φ of pinned
LCS for different frequency detunings (controlled by the po-
tential depths n1 and n2) from direct integration of Eq. (1)
(dots, LCS separation of 5.3 soliton widths) and the model of
Ref. [26] (triangles, LCS separation of 4 soliton widths). The
solid line refers to the Adler equation (3).

[19],

dΦ

dt
= ∆ω − ε sin(Φ), (3)

where in-phase and anti-phase solutions are selected for
zero detuning, ∆ω = 0, depending on the sign of the
coupling parameter ε: for positive ε the final stable state
is Φ = 0; for negative ε it is Φ = π. A comparison of
the results of the Adler equation with negative ε and the
simulations of the synchronization of LCS in both equa-
tions (1) and the model of Ref. [26] is presented in Fig. 1.
The agreement is remarkable. Note that the π/2 value
observed in phase locking of dissipative solitons without
defects [13] is now replaced by the π value typical of Adler
synchronization. In-phase and out-of-phase values have
already been observed in numerical simulations of LCS
in cubic-quintic CGL equations with regular variations
of the background [28, 29] although no Adler scenario is
suggested. In particular unless the period of the modula-
tion is much larger than the length scales due to soliton
interaction, the LCS are forced into different minima of
the potential and do not experience any detuning differ-
ence anymore [29]. This is consistent with the π-phase
states we observed for localized defects of equal depths
(|n2 − n1| = 0).

To characterize the Adler locking both in the spatial
and temporal domains, we display the time averaged far
field images in the top part of Fig. 2 and the optical
spectra in bottom part of Fig. 2 for two points inside
(∆ω/∆ωth = 0 and 0.99) and one outside the Adler re-
gion (∆ω/∆ωth = 2), respectively. Progressive change of
the LCS phase difference Φ (from π in Fig. 2a to around
1.5π in Fig. 2b) is reflected in the change in the symme-
try of the fringe pattern. Far field fringes are well defined
in the region where the LCS are locked in frequency (see
the full overlap of the soliton peaks in the frequency spec-
trum in Fig. 2d and 2e) indicating a strong interaction.
For detunings much larger than the locking range, the
fringe visibility disappears and the spectrum is formed
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just by the lines of the individual solitons (not shown)
corresponding to LCS operating independently. For de-
tunings just outside the Adler locking region, however,
some phase and spectral correlation survives due to non-
uniform evolution of the relative phase (Figs. 2c and 2f).
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FIG. 2: (Color online) Far field fringes (a)-(c) averaged over
2 µs, and optical spectra (d)-(f) for a time window of 5 µs,
for ∆ω/∆ωth = 0 (a,d), 0.99 (b,e) and 2.0 (c,f) obtained from
simulations of the model of Ref. [26]. In (d,e) the LCS spectral
peaks (dashed and solid lines) overlap.

The Adler locked state between LCS is a robust feature
independent of initial conditions such as initial phases,
frequencies and sequential order of creation of the two
LCS. Once the locked state is attained, one of the two
LCS can be switched off by a short, localized perturba-
tion to the carrier density at its location. Hence, LCS
retain their solitonic properties in the phase-locked state
in the sense that they are still individually bistable and
optically controllable.
The experiment has been performed with a tempera-

ture tuned 981 nm VCSEL of 200 µm circular aperture
and a volume Bragg grating (VBG) with a single reflec-
tion peak at 981.1 nm, a reflection bandwidth of 0.2 nm
full-width at half-maximum (FWHM) and a peak reflec-
tivity of 99% [15]. The external cavity for the frequency-
selective feedback is arranged in a self-imaging configura-
tion that maintains the high Fresnel number of the VC-
SEL cavity and ensures local feedback compatible with
self-localization (see Fig. 3). Small deviations from the
self-imaging condition are not critical for the reported
phenomena. The detection system comprises two charge-
coupled-device cameras for near- and far-field imaging,
and a scanning Fabry-Perot interferometer with a 10 GHz
free spectral range to measure the optical spectrum. Sev-
eral LCS appear at certain spatial locations defined by
the traps when increasing the VCSEL injection current
and display hysteretic behavior when decreasing the cur-
rent again. The experiment described below is performed
at a bias current at which both LCS involved are indi-

vidually bistable. Investigations were performed on pairs
of different LCS with a distance of 30 to 80 µm. We
focus here on a configuration of two LCS a distance of
79 µm, but the results are typical also for the other con-
figurations. Each of these LCS is a coherent emitter but
they are usually mutually incoherent due to the disorder
[15, 18].
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FIG. 3: Schematic diagram of a self-imaging cavity coupling
a VCSEL to a frequency-selective element. The beam profiles
indicate two interacting LCS. The dotted lines correspond to
the centers of the bundle of rays emitted by the soliton. The
tilt angle Θ is greatly exaggerated for clarity of display. The
focal lengths of the intra-cavity lenses L1, L2 are f1 = 8 mm
and f2 = 50 mm, the total cavity length L ≈ 12 cm with a
1.23 GHz free spectral range. L3 images the near field of the
VCSEL into the detection arm.

Since it is experimentally awkward to vary the detun-
ing between two LCS by locally changing the properties
of the VCSEL itself, we use a piezo-electric transducer to
minutely tilt the external cavity’s end reflector (VBG)
with respect to the optical axis. This leads to a differen-
tial change of the external cavity length for the two LCS
and thus to a differential change in feedback phase, which
can be incorporated into Eqs. (1) by making σ complex.
In this way the frequency difference, i.e. the detuning
∆ω, between two LCS can be tuned [30]. During the
scan, LCS position in near field and angular center in far
field stay constant to better than 5% and 2.5% of their
width, respectively. When performing such a scan, a re-
gion of frequency and phase locking appears, identified
in Fig. 4 by the region of high fringe visibility in the far
field. These fringes are video integrated over a time of
20 ms (significantly longer than any intrinsic time scale)
and last for seconds to hours depending on parameters.
This illustrates that locking – once achieved by a careful
alignment of the VBG – is a robust phenomenon.

As expected for the Adler scenario, in the locking re-
gion, the fringe phase varies smoothly and quasi-linearly
with the detuning of the external cavity. It is much more
noisy outside, where the visibility is low. There is no
significant phase hysteresis when the tilting is reversed
(see the green solid and dashed lines in Fig. 4), again
as expected for the Adler scenario. The transitions to
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and from frequency and phase-locking are rather abrupt
(Fig. 4, black curve). For clarity, we show only a single
sweep of the fringe visibility, because there is significant
jitter at the transition points. This and the fact that the
locking range is only about π/2 can be attributed to fea-
tures beyond the phase-only approximation underlying
the Adler equation such as the multi-longitudinal mode
structure and possibly amplitude dynamics [31]. Longi-
tudinal mode hopping of individual solitons can enable
and/or quench the Adler dynamics thus explaining the
jitter and limited locking range of (Fig. 4). Within the
locked region, however, the dynamics follows the Adler
scenario with the locking phase being determined by the
solitons’ differential feedback phase.

The importance of the external cavity structure is also
evidenced by the fact that locking-unlocking scenarios
can be induced by changing the VCSEL current if the
VBG is adjusted close to the locking region. In this case
the refractive index effects due to the ohmic heating shift
the cavity resonances and induce hopping between dif-
ferent external cavity modes for each individual soliton.
The LCS can then lock to a common external cavity mode
for some range of the injection current and display again
Adler interaction.
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FIG. 4: (Color online) Fringe visibility (black) and fringe
phase (green curves, gray in print) as a function of the tilt
angle that changes the difference between the feedback phases
of the LCS. This difference is converted to a frequency scale
by multiplying it by the free spectral range of the external
cavity thus providing the change of the relative detuning be-
tween the two LCS in the external cavity. The zero of this
detuning scale is arbitrary. The solid and dashed green curves
are obtained for scanning the tilt back and forth. The fringe
phase is obtained from the phase of a cosine-wave fitted to
far field profiles like those in the upper row of Fig. 5. Other
parameters: Temperature 69◦C, current I = 373 mA.

Fig. 5 shows experimental far-field fringes (upper part)
and the corresponding optical power spectra (lower part),

to be compared with the numerical results of Fig. 2.
When the fringe visibility is high (Figs. 5a, b), the two
LCS have the same frequency (Figs. 5d, e). Weak side-
modes indicate some residual excitation of neighboring
external cavity modes. The change in fringe phase from π
(Fig. 5a) to 1.5 π (Fig. 5b) is reflected in the change in
symmetry of the fringe pattern. Outside the locking re-
gion the fringes essentially disappear (Fig. 5c) and the
two LCS operate on different frequencies.

(a) (b) (c)

(d) (e) (f)

FIG. 5: Upper row: cut through far field intensity distribution
orthogonal to fringe orientation. Lower row: optical power
spectra. Left column (a,d) for detunings around 12 MHz,
locked with a phase of π; center column (b,e) around 18 MHz,
near the end of the locking region, locked with a phase of 1.5 π;
right column (c,f) around 22 MHz, unlocked, no clear fringes.

Synchronization behavior has been discussed in both
continuous and coupled oscillator models [20]. Our study
uses a continuous model, but synchronization is between
‘discrete’ entities, the solitons. As such, self-localized
solitonic oscillators provide a nice bridge between spa-
tially extended media and coupled, pre-defined oscilla-
tors. Although we have demonstrated the validity of
Adler’s model for just two solitons, we suggest that net-
work synchronization in the spirit of Kuramoto’s model
(with coupling possibly controlled by the deviation from
the self-imaging condition) should be possible with many
LCS in a fruitful analogy with brain activity [32] and,
possibly, with spatio-temporal excitability [23].

In conclusion, we have demonstrated spatio-temporal
Adler synchronization without injection in semiconduc-
tor lasers with frequency selective feedback. The syn-
chronization is induced by spatial defects where the LCS
are pinned. The presence of the defects breaks the trans-
lational symmetry, fixes the relative distance between
solitons and locks the relative phase to values different
from π/2 observed numerically in the absence of defects
or experimentally in temporal-longitudinal systems. A
regime of Adler synchronization is identified when chang-
ing the frequency of each soliton with respect to that of
its neighbour.
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