Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Analysis of the vibration of pipes conveying fluid

Zhang, Y.L. and Gorman, Daniel and Reese, Jason (1999) Analysis of the vibration of pipes conveying fluid. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 213 (8). pp. 849-860. ISSN 0954-4062

[img]
Preview
PDF
Reese_JM_Pure_Analysis_of_the_vibration_of_pipes_conveying_fluid_Aug_99.pdf
Final Published Version

Download (612kB)| Preview

    Abstract

    The dynamic equilibrium matrix equation for a discretized pipe element containing flowing fluid is derived from the Lagrange principle, the Ritz method and consideration of the coupling between the pipe and fluid. The Eulerian approach and the concept of fictitious loads for kinematic correction are adopted for the analysis of geometrically non-linear vibration. The model is then deployed to investigate the vibratory behaviour of the pipe conveying fluid. The results for a long, simply supported, fluid-conveying pipe subjected to initial axial tensions are compared with experimentally obtained results and those from a linear vibration model.