Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Stability of lobed balloons

Pagitz, M and Xu, Yixiang and Pellegrino, S. (2006) Stability of lobed balloons. Advances in Space Research, 37 (11). pp. 2059-2069. ISSN 0273-1177

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper presents a computational study of the stability of simple lobed balloon structures. Two approaches are presented, one based on a wrinkled material model and one based on a variable Poissons ratio model that eliminates compressive stresses iteratively. The first approach is used to investigate the stability of both a single isotensoid and a stack of four isotensoids, for perturbations of infinitesimally small amplitude. It is found that both structures are stable for global deformation modes, but unstable for local modes at sufficiently large pressure. Both structures are stable at any pressure if an isotropic model is assumed. The second approach is used to investigate the stability of the isotensoid stack for large shape perturbations, taking into account contact between different surfaces. For this structure a distorted, stable configuration is found. It is also found that the volume enclosed by this configuration is smaller than that enclosed by the undistorted structure.