Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Proton acceleration using 50 fs, high intensity ASTRA-Gemini laser pulses

Prasad, R. and Ter-Avetisyan, S. and Doria, D. and Quinn, K. E. and Romagnani, L. and Foster, P. S. and Brenner, C. M. and Green, J. S. and Gallegos, P. and Streeter, M. J. V. and Carroll, D. C. and Tresca, O. and Dover, N. P. and Palmer, C. A. J. and Schreiber, J. and Neely, D. and Najmudind, Z. and McKenna, P. and Zepf, M. and Borghesi, M. (2011) Proton acceleration using 50 fs, high intensity ASTRA-Gemini laser pulses. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 653 (1). pp. 113-115. ISSN 0168-9002

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We report on experimental investigations of proton acceleration from thin foil targets irradiated with ultra-short (similar to 50 fs), high contrast (similar to 10(10)) and ultra-intense (up to 10(21) W/cm(2)) laser pulses. These measurements provided for the first time the opportunity to extend the scaling laws for the acceleration process in the ultra-short regime beyond the 10(20) W/cm(2) threshold. The scaling of accelerated proton energies was investigated by varying the thickness of Al targets (down to 50 nm) under 35 angle of laser incidence and with p-polarised light.