Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

A structured low-rank wavelet solver for the Ornstein-Zernike integral equation

Fedorov, M. V. and Flad, H.-J. and Chuev, G. N. and Grasedyck, L. and Khoromskij, B. N. (2007) A structured low-rank wavelet solver for the Ornstein-Zernike integral equation. Computing, 80 (1). pp. 47-73. ISSN 0010-485X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this article, we present a new structured wavelet algorithm to solve the Ornstein-Zernike integral equation for simple liquids. This algorithm is based on the discrete wavelet transform of radial distribution functions and different low-rank approximations of the obtained convolution matrices. The fundamental properties of wavelet bases such as the interpolation properties and orthogonality are employed to improve the convergence and speed of the algorithm. In order to solve the integral equation we have applied a combined scheme in which the coarse part of the solution is calculated by the use of wavelets and Newton-Raphson algorithm, while the fine part is solved by the direct iteration. Tests have indicated that the proposed procedure is more effective than the conventional method based on hybrid algorithms.