

POE + Monitoring including the 1st Scottish Passive House

paul tuohy gavin murphy alison cowie gokay devici ingo theoboldt

POE + Monitoring including the 1st Scottish Passive House

Abstract

- Project has been running since March 2011.
- Three dwellings monitored include the first Scottish Passive house, a Low Energy House (no MVHR), and a 1950s dwelling; located in Dunoon, Scotland.
- Monitoring includes: energy use; internal and external conditions (Temperatures, RH and CO2 levels inside and temperature and solar radiation outside); and systems performance (including solar hot water).
- Post occupancy evaluation (POE) carried out through inspection and questionnaire.
- Energy used, CO2 and relative humidity levels compared.
- Operation of the different ventilation schemes highlighted.
- Costs and electricity tariffs highlighted.
- Learnings identified include ventilation, heat pump, solar and auxiliary hot water services.
- Improvements to current processes are suggested.
- POE and monitoring are essential feedback for the building design and construction process.

CEPHEUS-SCOT: Location of dwellings

1 – Passive House (et) 2 – Code level 4 House (mt) 3 – 1950s House (et) all-electric heating and hw

POE: Passive House

Snagging:

- MVHR intake and exhaust duct insulation
- Air Source Heat Pump winter performance
- Solar / Electric Water Heating
- Tariff

The resolution of these snags is underway.....

POE: Passive House

Snagging:

• MVHR intake and exhaust duct insulation

POE: Passive House

Snagging:

• Air Source Heat Pump winter performance

Annual Coefficient of Performance - Heat Pump Total System Performance Ratio of Heat Generator

H/P type	Emitter	Test conditions set out in EN14511					
	Туре	Lowest source temp			Highest source temp		
		Sink	Source	Sink	Source	Sink	Source
Air to Water (Source -ambient air only)	UFH	35/a	-7/-8	35/a	2/1	35/30	7/6
	Convector	45/a	-7/-8	45/a	2/1	45/a	7/6
	Radiator	55/a	-7/-8	55/a	2/1	55/a	7/6

2.50

0.40

POE: Passive House

Snagging:

• Solar / Electric Water Heating – electric heater on in middle of June day?

POE: Passive House

Snagging:

• Tariffs – THTC 7p/kWh vs Standard 12p/kWh for space and water heat

CEPHEUS-SCOT: Monitoring kit

CEPHEUS-SCOT: Monitoring kit

INITIAL OBSERVATIONS

Electricity summary March – June 2011

> (Eirini Moutzouri)

Average Daily Electric Consumption (Code level 4 dwelling)

SOLAR THERMAL – EXPECT 55% ANNUAL CONTRIBUTION - PHPP

SOLAR THERMAL – 55% ANNUAL CONTRIBUTION - PHPP

95 65 -90 60 -85 80 55 MAN 75 50 70 65 45 -60 40 55 Amps 2 35 50 45 30 40 25--35 Mr. 30 20 25 15 20 15 10 10 5 5 0 -0 05/06/2011 06/06/2011 6:00:00 06/06/2011 12:00:00 06/06/2011 18:00:00 07/06/2011 23:56:18 0:00:00

Electric immersion heater controls not optimised

SOLAR THERMAL – 55% ANNUAL CONTRIBUTION - PHPP

Electric immersion heater controls – fixed?

But still not optimised? Now 60°C 2x per day 5-6 am and pm

SOLAR THERMAL – 55% ANNUAL CONTRIBUTION - PHPP

Solar system controls – if panels 6°C > bottom tank sensor then pump is on – can flow water as cool as 15°C

Pink = flow from solar panel, **Purple** = return to panel from tank

SOLAR THERMAL – 55% ANNUAL CONTRIBUTION - PHPP

Published results suggest 40% solar fraction for Solar plus Aux heating to 60°C 2x per day (Dublin climate)

CONCLUSIONS

CONCLUSIONS

paul tuohy gavin murphy alison cowie gokay devici ingo theoboldt

CONCLUSIONS

