Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Mixed state geometric phases, entangled systems, and local unitary transformations

Ericsson, M and Pati, A K and Sjoqvist, E and Brannlund, J and Oi, D K L (2003) Mixed state geometric phases, entangled systems, and local unitary transformations. Physical Review Letters, 91 (9). -. ISSN 0031-9007

[img]
Preview
PDF
0206063v2.pdf
Preprint

Download (146kB) | Preview

Abstract

The geometric phase for a pure quantal state undergoing an arbitrary evolution is a "memory" of the geometry of the path in the projective Hilbert space of the system. We find that Uhlmann's geometric phase for a mixed quantal state undergoing unitary evolution depends not only on the geometry of the path of the system alone but also on a constrained bilocal unitary evolution of the purified entangled state. We analyze this in general, illustrate it for the qubit case, and propose an experiment to test this effect. We also show that the mixed state geometric phase proposed recently in the context of interferometry requires unilocal transformations and is therefore essentially a property of the system alone.