Picture child's feet next to pens, pencils and paper

Open Access research that is helping to improve educational outcomes for children

Strathprints makes available scholarly Open Access content by researchers in the School of Education, including those researching educational and social practices in curricular subjects. Research in this area seeks to understand the complex influences that increase curricula capacity and engagement by studying how curriculum practices relate to cultural, intellectual and social practices in and out of schools and nurseries.

Research at the School of Education also spans a number of other areas, including inclusive pedagogy, philosophy of education, health and wellbeing within health-related aspects of education (e.g. physical education and sport pedagogy, autism and technology, counselling education, and pedagogies for mental and emotional health), languages education, and other areas.

Explore Open Access education research. Or explore all of Strathclyde's Open Access research...

An automatic sequential recognition method for cortical auditory evoked potentials

Hoppe, U. and Weiss, S. and Stewart, R.W. and Eysholdt, U. (2001) An automatic sequential recognition method for cortical auditory evoked potentials. IEEE Transactions on Biomedical Engineering, 48 (2). pp. 154-164. ISSN 0018-9294

[img]
Preview
PDF
hoppe01a.pdf
Final Published Version

Download (298kB) | Preview

Abstract

The detection of cortical auditory evoked potentials (CAEP), which are part of the electroencephalogram (EEG) in reaction to acoustic stimuli, has important applications such as determining objective audiograms. The detection is usually performed by a human operator, with support from often basic signal processing methods. This paper presents a novel mechanism for the detection of CAEPs, which is fully automatic and stops the measurement when a given confidence is reached. This proposed detector comprises of three stages. First, a feature extraction by a wavelet transform parameterizes the time domain EEG signal by only few transform coefficients. This feature vector is then classified by a neural network which yields a binary vote on every EEG segment. Finally, a sequential statistical test is performed on successive classifications; this stops the measurement if a specified decision confidence has been reached. The adjustment of the detector according to a clinical database is discussed. Thus adjusted, the proposed CAEP detection scheme is applied to a study, and compared with a human operator. The results demonstrate that this method can attain similar results, but outperforms the human expert for stimulation levels close to the hearing threshold.