Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

An automatic sequential recognition method for cortical auditory evoked potentials

Hoppe, U. and Weiss, S. and Stewart, R.W. and Eysholdt, U. (2001) An automatic sequential recognition method for cortical auditory evoked potentials. IEEE Transactions on Biomedical Engineering, 48 (2). pp. 154-164. ISSN 0018-9294

[img]
Preview
PDF
hoppe01a.pdf
Final Published Version

Download (298kB)| Preview

    Abstract

    The detection of cortical auditory evoked potentials (CAEP), which are part of the electroencephalogram (EEG) in reaction to acoustic stimuli, has important applications such as determining objective audiograms. The detection is usually performed by a human operator, with support from often basic signal processing methods. This paper presents a novel mechanism for the detection of CAEPs, which is fully automatic and stops the measurement when a given confidence is reached. This proposed detector comprises of three stages. First, a feature extraction by a wavelet transform parameterizes the time domain EEG signal by only few transform coefficients. This feature vector is then classified by a neural network which yields a binary vote on every EEG segment. Finally, a sequential statistical test is performed on successive classifications; this stops the measurement if a specified decision confidence has been reached. The adjustment of the detector according to a clinical database is discussed. Thus adjusted, the proposed CAEP detection scheme is applied to a study, and compared with a human operator. The results demonstrate that this method can attain similar results, but outperforms the human expert for stimulation levels close to the hearing threshold.