Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Two-color continuous-variable quantum entanglement in a singly resonant optical parametric oscillator

Cuozzo, Domenico and Oppo, Gian-Luca (2011) Two-color continuous-variable quantum entanglement in a singly resonant optical parametric oscillator. Physical Review A, 84 (4). ISSN 1094-1622

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We apply the input-output theory of optical cavities to formulate a quantum treatment of a continuous-wave singly resonant optical parametric oscillator. This case is mainly relevant to highly nondegenerate signal and idler modes. We show that both intensity and quadrature squeezing are present and that the maximum noise reduction below the standard quantum limit is the same at the signal and idler frequencies as in the doubly resonant case. As the threshold of oscillation is approached, however, the intensity-difference and quadrature spectra display a progressive line narrowing which is absent in the balanced doubly resonant case. By use of the separability criterion for continuous variables, the signal-idler state is found to be entangled over wide ranges of the parameters. We show that attainable levels of squeezing and entanglement make singly resonant configurations ideal candidates for two-color quantum information processes, because of their ease of tuning in experimental realizations.