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ABSTRACT. In this paper we prove existence and uniqueness of variational inequality solutions
for a bistable quasilinear parabolic equation arising in the theory of solid-solid phase transitions and

discuss its stationary solutions, which can be discontinuous.
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1. INTRODUCTION

To generalise the Ginzburg Landau phase transition theory to high gradients in

the order parameter (u), Rosenau [7, 8] proposed the following free energy functional:

Elu](t) = /Q (W () + e¥(|Vu))] da, (1.1)

where the diffusion coefficient ¢ > 0, the interface energy W(s) is a convex function

of its variable that grows linearly in s; for example, below we take
U(s) =V1+s2—1,

W (u) is the bulk energy, which we take to be a double well one, and fix

The formal L? gradient flow of (1.1) is
u =€V - (Y(Vu)) + f(u), (1.2)
where f(u) = —=W'(u) 1= u — u?,
Y(Vu) = ——
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2 M. BURNS AND M. GRINFELD

and (z,t) € Q x (0,T) = Qr for some bounded domain Q@ C R", T"> 0. (1.2) has to
be supplemented with suitable initial and boundary conditions; here we consider the
physically relevant Neumann boundary conditions, ¥(Vu) -n = 0 on 02 which, since
¥(0) = 0, implies that Vu -n = 0 on 0.

In this paper, using the methods of [5] we prove a well-posedness result for (1.2)
Although this result holds for any dimension n, here we restrict ourselves to the one-
dimensional case 2 = (0, L), L > 0. As shown in [2], the bifurcation structure for the
stationary problem associated with (1.2) depends on the parameter € as well as the

length L of the interval; these issues will be discussed in more detail in Section 4.

2. PRELIMINARIES

In this section we briefly recall some properties of the function space BV (Q2). A
function of bounded variation is a u € L'(€) whose partial derivatives in the sense of

distributions are measures with finite total variation

/|ux|dx:sup{/uvxdx cv e CR(Q), [v(z)| < 1forx € Q}
0 0

The space BV (€2) endowed with the norm

lllzy = lJullzra + / s da

is a Banach space. The topology on BV which we will require is the BV-weak”
topology defined by

ujBV;w*u & u; — u in LNQ) and wj, — u, in M(Q)

where M () is the space of bounded measures on 2 and u;, — u, in M(Q2) means

that
/ujxgo dr — / Uz dr
Q Q
for all ¢ € Cp(2).

We also have the following compactness property: for every bounded sequence
{u;}, there exists a subsequence {u;;} and a function u in BV (Q2) such that u A

u.

Following [6], we define [, ¥(u,) and if U(s) = v/1 + s% we arrive at the following

definition

/\/1+\ux|2dx: sup {—/uvxdx—k/\/l—v?dx ; \v(x)\ﬁlV:cGQ}.
Q Q Q

veCge

Hence we obtain the following useful estimate:

/\uwmx—m\ g/\/1+\uw|2—1dm§/|um\d:c+|§2| (2.1)
Q Q Q
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for all u € BV ().

3. Existence and uniqueness of weak solutions of the parabolic problem

The problem we are considering is

u = (Y(ug))e + f(u), (1) € Qr=Qx(0,T), (3.1)
uzp(0,t) = ux (L, t) =0, (x,t) € 02 x (0,7,
u(z,0) = up(x), =€,

where (0,7) is any finite time interval over which we will prove existence of solutions.

Note that without loss of generality we have put e = 1.

First, we need to define our notion of a weak solution. To begin with, let us
suppose that u is smooth enough so that we can justify the calculations which follow.
For smooth test functions v € C*®(Qr), we multiply our equation by v — u and
integrate by parts using Neumann boundary conditions to obtain

/ (ug — f(u))(v —u)drdt + U(ug)(vy — ug) dxdt = 0. (3.2)
Qr Qr
Since U(s) is convex, we have that ¥(v,) — ¥(u,) > ¥'(u,)(v, — u,) and hence

/ (ug — f(u))(v —u)dx dt+/ (V(v,) — U(uy))dxdt >0,

T T
for smooth functions v € C*°(Qr). This motivates the following definition of a weak

solution to our problem.

Definition 3.1. Let M(Qr) denote the space of bounded measures on Qr. A function
u € L>®(Qr) N L*((0,7),BV(Q) N{u : uy € M(Qr)} is called a weak solution of
problem (5.1) if u; € L*(Qr) and u satisfies the variational inequality

/ (ug — f(u))(v—u)dedt + / (V(vy) — ¥(uy)) dxdt >0 (3.3)

T T

for allv e L®(Qr)N{v:v, € M(Qr)}.

(Thus v,, the distributional derivative of the function v, will be a measure with

finite total variation.)

By the above discussion, classical solutions of (3.1) automatically satisfy vari-
ational inequality (3.3). To see that a smooth solution of (3.3) also satisfies (3.1),

choose as a test function v = u + ch where h € C*°, ¢ € R, so that (3.3) becomes

/QT@% — F(w))(ch) dx dt + /

Qr
Hence from the Taylor series of ¥ (u, + ch,) we have

U(u, + ch,)dedt > / U(u,) dz dt.
Qr

2

c/ (ug — f(u))hdx dt + c/ V' (ug)h, dz dt + % U (ug)(hy)* + ... > 0.
Qr Qr Qr
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Considering firstly, ¢ > 0, then ¢ < 0 and letting ¢ — 0 from above and below yields

/ (ug — f(u))hdxdt + Y(ug)hy drdt =0, V h e CE(Qr).
Qr Qr

Integrating by parts and using the boundary conditions, we see that u classically
satisfies (3.1).

Theorem 3.2. The problem (3.1) admits a unique variational inequality solution for
all T > 0 for every ug(x) € BV ().

For v > 0, consider the following regularised problem:

ur = (Y(u))z + f(u), (z,t) € 2x(0,T),
uz(0,t) = ug (L, t) =0, (x,t) € 002 x (0,7T),
u(z,0) =ul(z), =€ Q,

where u](z) satisfy

ug € C™(Q), ug, =0 on 09,

|[ug — uol|ze) — 0 as v — 0, ||ugllre() < [|uol|ze(@) +1 = m,

and /|ugm|dx§C(Q)/ |uo,| da.
Q Q

The existence of such a sequence of regularising initial data uj € C*°(Q) follows from
the fact the initial data up € BV () and because the space C*(€2) is dense in the
space of functions of bounded variation. Let u?(x,t) represent the unique classical
solution to the regularised problem arising from the regularising initial data u](z);
these exist by standard parabolic theory. We want to show that there exists a limit
u € BV(Q) of u” in L'(Qr) as v — 0, which will be a weak solution to our problem
and that it does not depend on the choice of the sequence u?. As in [5], we will
need to establish a series of convergence properties for, and a priori bounds on, the

approximating solutions u”. Namely we show

Lemma 3.3.
A: the sequence {u"} is uniformly bounded in L>*(Qr) and the sequence {u]} is
uniformly bounded in L*(Qr)
B: the sequence {u"} is uniformly bounded in BV (Qr) and in L>=((0,T), BV (Q))
C: the sequence {u"} converges in the space L>®((0,T), L*(?)) and the sequence
{u(t,-)} converges in the space L*(Q) for all t € [0,T].

Proof. [A]: In what follows, let @), denote the space-time cylinder Q x (0, 7) where 7
is arbitrary in [0, 7. First of all, we have that

u| Lo (@r) < Mo, (3.4)
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where mgy > 1, by the parabolic maximum principle and properties of f(-).

We show next that the sequence {u;} is uniformly bounded in L?(Qr). Multiply

the regularised problem by u; and integrate over Q,:

/ (u))? dx dt = w(u”)um dx dt + f(u”) Jdx dt

/ / (ul) dxdt+/ / (u”) dx dt

| W = W) do [ (PO er — Pla)

where 7 is arbitrary in [0, 7. Hence

; () @)
mmm%+4wmmﬂn+ékzwﬂ+7rdx

4 2
< / U(u,)do + (% 4 %) 9, (3.5)
Q

from the bounds we have on u§ and u”. Hence using the bound on [, ¥(u,)dz and
the bound on the total variation of the regularised initial data, it follows from (3.5)
taking 7 =T, that

mg . m
[l 112201y < /Q‘I’(Ugw) dx + (TO + 70) [8]

4 2
< [ Jul,lde+ <@ + 00 1) ol
Q 2

< C(Q)/ |, | dx 4+ Cy < o0, (3.6)
since ug € BV(£2). Thus we have that the sequence {u;} is uniformly bounded in
L?(Qr) and therefore also in L'(Qr).

[B]: We will also need to show that the sequence {u”} is uniformly bounded in the
space L>((0,7), BV(Q)) and also that {u”} is uniformly bounded in BV (Qr). To
see the former, first note that (3.5) also implies that

4 2
/ W) |oer d < C(Q)/ luo,| da + (E + @) 0,
Q (¢} 4 2

but since 7 was arbitrary in [0, 7] we have, using the lower bound on [, ¥(u,) once
again, that for all ¢t € [0, T

mi  m2
Q) mmw+—i+i|mZ/w@me/M%mww

so that /|u;|da;g0(9)/ o, |de+Cy < Cy Ve 0,T].  (3.7)

This, together with the fact that u(¢,-) € L'(Q) for all ¢ € [0, T] implies that

| (t, )|y < Cs Vtel0,T], with Csindependent of v and of ¢,
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so that supg_,<r |[u”(t,-)||Bv(@) < C3. Hence we have that the sequence {u”} is in-
deed uniformly bounded in L*((0,7"), BV (Q2)).

Since u(t,-) € LY(Q) V t € [0,T], we infer that u? € L'(Qr) and (3.7) implies
that
T
0o Jo

l|[u"||Bvior) < Ci, (3.8)

we have that

for Cy independent of v and so u” is also uniformly bounded in BV (Qr).

[C]: We now establish that the sequence {u?(t,-)} converges in the space L?*(Q)
as v — 0 for all t € [0,7] and that the sequence {u”} converges in the space
L>((0,T),L*(Q)) as v — 0. To this end, consider u” and u”» both satisfying the
regularised problem, multiply the difference of the two equations by the difference

u?™ — u", then integrate over (), to obtain
1 0
3 | g drde = [ )~ ) ) dede
Q- )

+/ (f(u™) — f(u™))(u™ —u™) dz dt (3.9)

But since the function v(s) is monotonic, the first term on the right-hand side of (3.9)

is non-positive and so (3.9) becomes
T d Ym _ 02 W) — "N — w0 da
[ (fam—ampa)ar <2 [ (m) = pameon =) ds i
B 2/ [(wm =) = {@)* = (@)}] (@ =) dwdt

.

- 2/ (1= {(™)* + wmu + (u™)?}] ('™ — w™)? do dt
|[{(U'Ym)2 oYy 4 (U'Yn)2} _ 1]||U'Ym _ u'Yn|2 dx dt

<2|3m0—1\/ i — | da dt

/ 6m2 — 2| < / (w0 — 2 dx) dt (3.10)

Thus if we define C(mg) = |6mZ — 2| then we have, since 7 is arbitrary in [0, T
a
dt

Hence Gronwall’s inequality implies that

/(u'ym —u™)? dr < ec(mO)T/(ugm ud™)? du,
Q

Q

(u™ —u)? dx < C(myg) /(u“’m —u™)? dx.
Q Q
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so that from (3.10)

/(um — )2 | dx < / C'(myp) </ (urm™ — u)? d$> dt + /(ugm —u")? dx
0 0 0 0

< (Clmo)r )7 41) / (™ — ud)? da,
Q

but since 7 was arbitrary in [0, 7] and v and u™ both satisfy the regularised prob-
lem, we have

[fu™(t,-) —u™(t,-)||r2@) — 0 as Y, 7o — 0, for all t € [0,77].

So u (¢, -) is Cauchy in L?(Q) for all ¢ € [0, T hence the sequence u(t, -) converges in
L3(Q) for all t € [0, T] and from this it follows that u” converges in L*>°((0,T"), L*()).
U

We now pass to the limit as v — 0 making use of the above properties of the
sequence u”?. We have shown that there exists a unique u € L*((0,7"), L*(2)) such
that

| (t,-) —u(t,)||r2) = 0asy — 0Vt €[0,T] and ||u” — ul|r2(@,) — 0 as vy — 0,
but then this implies convergence in L' also so that we have
Hufy(tu ) - u(t7 >||L1(Q) — 0 as v 0 Vte [O,T],

and
[|u” —ul| 1) — 0asy—0 (3.11)
using the Cauchy Schwarz inequality.

We have also shown uniform boundedness of uj in L*(Qr), hence ||u|| 1,0 < C
and so by weak compactness in L?(Qr), we can extract a subsequence that we still

denote as {u]} which is such that
u] — uy in L*(Qr) with u, € L*(Q,).

This implies that given ¢ € L*(Q) we have

t
/0 <Uz(5575)790>L2(Q) ds = <UW($at)aSO>L2(Q) — (g (@), ‘P)L?(Q) y

and letting v — 0 gives

| (wlo.5).0) 1200 s = (020 900y = {10l@). 9}

from which it follows that the limit function w(z,t) satisfies the initial condition,
u(x,0) = ug(x), and following the same reasoning as for (3.4), the limit function u is
also uniformly bounded in L>®(Qr).

We now prove that the limit function u is in BV (Qr). We have shown that the

sequence {u”} is uniformly bounded in BV (Q7). Hence we can extract a subsequence
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denoted {u} that converges weakly to a BV function 7, say. That is, u(z,t) —
n(x,t) in BV (Qr)-weak-+ with n € BV (Qr), but this means that v — 7 in L'(Qr),

so from (3.11) by the uniqueness of the limit we must have
n=u&c BV(Qr) (3.12)

Hence by definition of BV functions on Qr, we conclude from (3.12) that weak first

derivative in space of u is a bounded measure on Q7.

We can now show that the limit function u is such that u(t, -) € BV (Q) for every
t € [0,T]. That the sequence {u} is uniformly bounded in L*>((0,7T"), BV (2)) means
that

[lu (¢, )llBv(e) < Cs, for almost everyt € [0,T].

Fix to arbitrary in [0,7]. We can extract a subsequence {u} of {u”} such that

uYi (tg, ) — Ulto,-) weak-x in BV (Q) with U(to,-) € BV (L2). But this means that
u¥(tg, ) — Ulty,-) in L'(Q2) and so we have once again from (3.11) that u(t, ) =
U(t,-) € BV(Q) for all t € [0,T] since t, was arbitrary in [0, 7.

It has been shown in [5] that for u € BV(Q) and ¥ convex, the functional
fQ (uy) dx is lower semi-continuous with respect to the L' convergence. Hence,
since we know that u(t,-) € BV () for almost all ¢t € [0, 7] and that
[|u¥(t, ) —u(t,-)||pyo) — 0 as v — 0 for all ¢ € [0, T] we must have that

v—0

/ U(u,)dr < lim inf/ U(ul)dx for all t € [0,T]. (3.13)
Q Q

We noted earlier that from (3.5), it follows that

/Q\p(u;g) iz < C(Q) /Q o] + (m{ + —2) Q] Ve, T, (3.14)

Hence taking the limit inferior of (3.14) as 7 — 0, we see that

/(|ux| —1)dx < / U(uy) dx
0 0
mg  m?
< liminf/ U(u))de < C’(Q)/ |uo,| dx + (—0 + 70) 1 Vtel0,T]
0 0

v—0 4

Thus we are lead to conclude that ||u(t,-)||pv@) < oo for almost all ¢ € [0,T]

and consequently
u € L>((0,7), BV(Q)).

For later, note that one may integrate (3.13) on [0, 7] to obtain

liminf/ \If(u;)dxdtZ/ U(u,) dx dt.
Qr

=0 Qr

An additional result that we will need when passing to the limit as v — 0 is that

as ||uY —ul|p1p) — 0asy — 0, |[f(u) = f(u)||£,(@p) — 0. This follows easily when
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one considers

/OT/Q|f(U)_f(u“/)|dxdt:/0T/Q|u—u3_(u“f_(uv)?))‘dxdt
S/OT/Q|7“L_wdxd“/OT/QIu—u”Hu?+mn+(M)Q\d:cdt

T T
§/ /|u—u”|d1’dt+3mg/ /|u—u7|d1’dt — 0 as 7 —0.
o Ja o Jo

So far we have shown that the limit function w is such that
u € L>*(Qr) N L=((0,7), BV(Q)) N{u: u, € M(Qr)},

so that all that remains is to be proven is that the limit function u satisfies the
variational inequality (3.3). Note that the variational inequality holds for the solutions

u? of the regularised problems with test functions taken from the smooth sequence
{’Un}neN C COO(QT) 1.e.

/ (uf — f(u”)) (0" —u”) dz dt +/ U(vr) — V(u))dedt > 0. (3.15)

T

It is shown in [6] that the space C*°(Qr) is dense in BV (Qr) equipped with the

topology defined by the distance
| vt~ [ )
Qr Qr

/ tg] — / o]
Qr Qr

which means that one can approximate BV (Qr) functions by a sequence of C*(Q7)
functions, i.e. for v € BV (Qr), there exists a sequence {v"} € C*°(Qr) such that

d(u7w) = ||u - w||L1(QT) + +

Y

/ V(o) — U(v,) as n — o0
T Qr

and /|v"—v|d:vdt—>0 as n — 00. (3.16)

This combined with all the properties that have been established for solutions u”
to the regularised problem, means that one may pass to the limit as n — oo and
subsequently as v — 0 in (3.15) to obtain the result.
As usual, in order to prove uniqueness of a weak solution to our problem we suppose
non-uniqueness and derive a contradiction. Hence suppose there are two weak solu-
tions u; and uy satisfying problem (3.1) and therefore the variational inequality (3.3)
with

ui(x,0) = us(z,0) = up(x). (3.17)
Take the variational inequality first with u = w1, v = us and then with u = us, v = u4
so that

/QT <% B (ul)) (uz — ur) d dt + /T U((u2)z) — U((u1)s)) dadt > 0,
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and
/QT (% B (Ug)) (w1 — ug) dvdt + /T U((u1)y) — ¥((u2),) dzdt > 0.

Adding these two inequalities gives

[ A =y < [ (7(n) = )1 = )

T

As before

/Q(u1 ) e < /OTC(mO) </Q(u1 _ u2)2dx) dt + /Q(ul(:c,O) — us(,0)) d

< (C(mg)T eCmIT 4 1) /Q(ul(a:, 0) — ug(x,0))? du,

using again the Gronwall inequality. Thus it follows from (3.17) that

ur (7, -) = ua(7, )| 22) = O,

and uniqueness follows from 7 being arbitrary in [0, 7.

4. STATIONARY SOLUTIONS IN ONE DIMENSION

The one-dimensional Neumann stationary problem for (1.2)

<71 = (W) + A\ f(u) =0, (4.1)
u'(0) =u/'(L) =0,

A = 1/¢, is studied in [2] and it is shown through an analysis of the time map
associated with the equation that the bifurcation behaviour depends not only on A
but also on the length L of the interval. For fixed L, the following proposition is

proven using Liapunov-Schmidt reduction

Proposition 4.1. The k-th bifurcation from the trivial solution of (4.1) is a super-
critical pitchfork if L > kr/\/2 and a subcritical pitchfork if the inequality is reversed.

It is also shown that for any given value of L, there is a value A*(L) beyond which
there cannot exist classical, i.e. C?((0,L)NC"([0, L]), solutions to (4.1) and solutions
at A = A*(L) develop infinite gradient.

Solutions to (4.1) are defined in the BV sense as functions of bounded variation

which satisfy the variational inequality
—)\/ fw)(v—u)dr+ / U(v,) — ¥Y(u,)dz >0 Yo € BV(Q), (4.2)
Q Q

which is obtained from (3.3) if one assumes that u; = 0. If without loss of generality

one considers monotone decreasing solutions to (4.1), a theorem proven in [2] is that
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(discontinuous) solutions constructed by patching together different level curves of

the Hamiltonian

1
H(u,u') =1— ———— — \W(u),
1+ (w)?
which satisfy u, = 0 at x = 0 and = L are are solutions to (4.1) in the BV sense.
Hence there exists a continuum of discontinuous stationary solutions beyond \*(L).
One can easily generate initial conditions which, for L fixed and A > \*(L), converge

to a discontinuous stationary solution of (1.2) by taking

up(z) = —atanh (/6 (% - 7)) : (4.3)

which serves as an approximation to the discontinuous steady state with a disconti-
nuity at some zy = yL for v € (0,1) and where uo(0) = —uo(L) = a € (0,1) and
3 is large and such that u)(zo) = —%2. In Figure 1, we fix L = 2.5 (supercritical)
and A =5 > A\*(L) =~ 4.019534 and solve (1.2), (4.3) with « = 0.98, 5 = 500 and
v = 0.24,0.5 and 0.76 respectively and the solutions indeed converge to a discontin-

uous steady state.

Ll "\ ---t=0 |
t=0.05

J---t=0

! t=0.05
| --t=0.15
oy —t=1000

--t=0.15
—1t=1000

.............

FiGure 1. Convergence of three initial data to three of the infinitely
many steady states of (1.2) for L = 2.5 and A = 5.

For details of the numerics, please consult [3]. Note from this figure that these
solutions have some stability properties (see [2] for a discussion of the right notion of

stability for this case.)

There are also similarly stable non-monotone solutions as in Figure 2 arising from

non-monotone initial data

if € is taken to be sufficiently small in (1.2).
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A A in /\ /\ if
il v

0 1.25 2.5 0 1.25 25
X b3

u(x I‘)

t=t,=245 t=1,=495
1t ‘ 1ﬁ —_— W
05ﬂ H 0.5F
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0 1.25 25 0 1.25 25
X X

u(x‘tz)

t=t,=24.95 t— oo

N T ] L —

0.5 B 0.5

0 1.25 25 0 1.25 2.5
X X

F1GURE 2. Convergence of a non-monotone initial condition to a non-
monotone steady solution of (1.2) with e = 0.001 and L = 2.5

This indicates that the structure of patterns that the bistable quasilinear equation
gives rise to is much richer than in the semilinear case, in which only the constant
solutions +1 attract all initial conditions with probability one.

Finally, given a continuum of stationary solutions, it is interesting to know which
has the lowest energy. It turns out that it is the most asymmetric of the possible

stationary solutions that minimize the energy over the continuum.



A BISTABLE QUASILINEAR PARABOLIC EQUATION: 13

—1.56

0 L %

ol

FIGURE 3. Plot of position of interface zq against energy E|u] of sta-
tionary solutions to (1.2) corresponding to L = 2.5 and A = 5.

5. CONCLUDING REMARKS

We have presented a model for solid-solid phase transitions and have proved the
existence of weak (variational inequality) solutions on all [0, 7], T' > 0. We have also
presented some results on discontinuous stationary solutions for the model, which
have some stability properties in stark contrast to the semilinear situation. Much
work remains to be done, in particular proving stabilisation of orbits. We expect that
nonlinear semigroup techniques of [1] together with a Simon-Lojasiewicz inequality
type result [4] will be required for that.
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