Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Experimental systems for studying the role of G-protein-coupled receptors in receptor tyrosine kinase signal transduction

Pyne, Nigel J and Waters, Catherine and Moughal, Noreen Akhtar and Sambi, Balwinder and Connell, Michelle and Pyne, Susan (2004) Experimental systems for studying the role of G-protein-coupled receptors in receptor tyrosine kinase signal transduction. Methods in Enzmology, 390. pp. 451-475. ISSN 0076-6879

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Early conception of G-protein-coupled receptor (GPCR) and receptor tyrosine kinase (RTK) signaling pathways was that each represented distinct and linear modules that converged on downstream targets, such as p42/p44 mitogen-activated protein kinase (MAPK). It has now become clear that this is not the case and that multiple levels of cross-talk exist between both receptor systems at early points during signaling events. In recent years, it has become apparent that transactivation of receptor tyrosine kinases by GPCR agonists is a general phenomenon that has been demonstrated for many unrelated GPCRs and receptor tyrosine kinases. In this case, GPCR/G-protein participation is upstream of the receptor tyrosine kinase. However, evidence now demonstrates that numerous growth factors use G proteins and associated signaling molecules such as beta-arrestins that participate downstream of the receptor tyrosine kinase to signal to effectors, such as p42/p44 MAPK. This article highlights experimental approaches used to investigate this novel mechanism of cross-talk between receptor tyrosine kinases and GPCRs.