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CLASSIFICATION OF BIJECTIONS BETWEEN

321- AND 132-AVOIDING PERMUTATIONS

ANDERS CLAESSON AND SERGEY KITAEV

Abstract. It is well-known, and was first established by Knuth in 1969, that
the number of 321-avoiding permutations is equal to that of 132-avoiding per-
mutations. In the literature one can find many subsequent bijective proofs
of this fact. It turns out that some of the published bijections can easily be
obtained from others. In this paper we describe all bijections we were able to
find in the literature and show how they are related to each other via “trivial”
bijections. We classify the bijections according to statistics preserved (from a
fixed, but large, set of statistics), obtaining substantial extensions of known
results. Thus, we give a comprehensive survey and a systematic analysis of
these bijections.

We also give a recursive description of the algorithmic bijection given by
Richards in 1988 (combined with a bijection by Knuth from 1969). This bi-

jection is equivalent to the celebrated bijection of Simion and Schmidt (1985),
as well as to the bijection given by Krattenthaler in 2001, and it respects 11
statistics—the largest number of statistics any of the bijections respects.
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1. Introduction and main results

Given two different bijections between two sets of combinatorial objects, what
does it mean to say that one bijection is better than the other? Perhaps, a rea-
sonable answer would be “The one that is easier to describe.” While the ease of
description and how easy it is to prove properties of the bijection using the descrip-
tion is one aspect to consider, an even more important aspect, in our opinion, is
how well the bijection reflects and translates properties of elements of the respective
sets.

Key words and phrases. bijection, permutation statistics, equidistribution, pattern avoidance,
Catalan structures.
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2 ANDERS CLAESSON AND SERGEY KITAEV

A natural measure for a bijection between two sets of permutations, then, is how
many statistics the bijection preserves. Obviously, we don’t have an exhaustive list
of permutation statistics, but we have used the following list as our “base” set:

asc, des, exc, ldr, rdr, lir, rir, zeil, comp, lmax, lmin, rmax, rmin,

head, last, peak, valley, lds, lis, rank, cyc, fix, slmax .

These are defined in Section 2. To make sure we find all statistics that a given
bijection “essentially” preserves, we include in our list of statistics those that are
obtained from our “basic” statistics by applying to them the trivial bijections on
permutations (reverse=r, complement=c, inverse=i) and their compositions. More-
over, for each statistic stat, in this extended list we consider two other statistics:
n-stat(π) = n − stat(π) and m-stat(π) = n+ 1 − stat(π), where n is the length of
the permutation. The meaning of n-stat or m-stat is often “non-stat”; for example,
n-fix counts non-fixed-points.

This way each basic statistic gives rise to 24 statistics. The base set contains
23 statistics, giving a total of 552 statistics. There are, however, many statistics in
that set that are equal as functions; for instance, des = asc.r, and peak = peak.r =
valley.c, where we use a dot to denote composition of functions. Choosing one
representative from each of the classes of equal statistics results in a final set of
190 statistics; we call this set STAT. In practice we settled for “empirical equality”
when putting together STAT: we considered two statistics equal if they gave the
same value on all 5914 permutations of length at most 7.

In the theorems below, the statistics presented are linearly independent. An
example of linear dependence among the statistics over permutations avoiding 132
is lmin− lmax+n-des− head = 0. The results below are also maximal in that they
cannot be non-trivially extended using statistics from STAT. That is, adding one
more pair of equidistributed statistics from STAT to any of the results would create
a linear dependency among the statistics.

A permutation π = a1a2 . . . an avoids the pattern 321 if there are no indices
i < j < k such that ak < aj < ai. It avoids 132 if there are no indices i < j < k
such that ai < ak < aj . Avoidance of other patterns is defined similarly.

Knuth [6, 7] showed that the number of permutations avoiding a pattern of
length 3 is independent of the pattern. This number is the n-th Catalan number,
Cn = 1

n+1

(

2n

n

)

. To prove this it suffices, due to the symmetry afforded by the trivial

bijections on permutations, to consider one representative from {123, 321} and one
from {132, 231, 213, 312}. That symmetry also means that to prove this bijectively,
it suffices to find a bijection from the set of permutations avoiding a pattern in one
of the classes to permutations avoiding a pattern in the other. This turns out to be
a rather complicated problem. Several authors have, however, succeeded in doing
so [4, 5, 8, 10, 11, 13, 14, 15]; we call those bijections

Knuth, Knuth-Rotem, Simion-Schmidt, Knuth-Richards, West,

Krattenthaler, Reifegerste, Elizalde-Deutsch, and Mansour-Deng-Du .

They are described in Section 3. In Section 4 we define, using recursion, a “new”
bijection called Φ. It turns out that Φ is related, via trivial bijections, to the
bijection by Knuth and Richards.

The main results of this paper are contained in the following three theorems.
The first theorem substantially extends what was previously known about statistics
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preserved by the bijections. In bold we mark the results known before this paper—
there is a total of 7 pairs of those; the remaining 68 pairs are new.

Theorem 1. The following results are maximal in the sense that adding one more

pair of equidistributed statistics from STAT to any of the results would create a

linear dependency among the statistics. In bold we mark the results that were known;

also, we indicate the sets between which a bijection acts.

(11) Knuth-Richards, 132-avoiding permutations → 123-avoiding permutations

valley.i valley lmin ldr.i head.i comp.r rank ldr lir.i lir rmax
valley valley.i lmin ldr head comp.r rank ldr.i slmax.c slmax.i.r head.i.r

(11) Simion-Schmidt, 123-avoiding permutations → 132-avoiding permutations

valley valley.i lmin ldr head comp.r rank ldr.i slmax.c slmax.i.r head.i.r
valley valley.i lmin ldr head comp.r rank ldr.i lir lir.i rmin

(11) Krattenthaler, 123-avoiding permutations → 132-avoiding permutations

peak.i peak rmax zeil last.i.r comp.r rank.r.c rdr slmax.r.i slmax.r last
valley valley.i lmin ldr head comp.r rank ldr.i lir lir.i rmin

(11) Mansour-Deng-Du, 321-avoiding permutations → 231-avoiding permutations

valley peak.i rmin rir last comp rank.r lir.i slmax.c.r slmax.i head.i
valley peak.i rmin rir last comp rank.r lir.i rdr ldr.i lmin

(9) Knuth-Rotem, 321-avoiding permutations → 132-avoiding permutations

valley.i peak exc slmax head slmax.r.c.i rir.i lir last.i
valley.i valley des rdr ldr.i zeil lmax rmin m-ldr

(9) Reifegerste, 321-avoiding permutations → 132-avoiding permutations

valley peak.i exc slmax.i head.i slmax.r.c rir lir.i last
valley valley.i des zeil ldr rdr rmin lmax m-ldr.i

(7) West, 123-avoiding permutations → 132-avoiding permutations

valley.i exc.r slmax.i.r slmax.c ldr ldr.i head
valley.i asc lir.i comp rmax ldr.i head

(5) Knuth, 321-avoiding permutations → 132-avoiding permutations

exc fix lir.i lir lis

exc fix rmin lmax n-rank

(1) Elizalde-Deutsch, 321-avoiding permutations → 132-avoiding permutations

fix

fix

The numbers in parenthesis in Theorem 1 indicate the number of statistics re-
spected. It turns out that bijections with the same number are “trivially” related.
The next theorem makes this precise.
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Theorem 2. The following relations among bijections between 321- and 132-avoiding
permutations hold:

reverse ◦Φ−1 = inverse ◦ Simion-Schmidt ◦ reverse

= inverse ◦ Krattenthaler ◦ reverse ◦ inverse

= inverse ◦ reverse ◦ Mansour-Deng-Du

= Knuth-Richards−1 ◦ reverse

and

Reifegerste = inverse ◦ Knuth-Rotem ◦ inverse

Also, there are no other relations among the bijections and their inverses via the

trivial bijections that does not follow from the ones above.

Thus if we regard all bijections as bijections from 321- to 132-avoiding permutations—
applying the transformations in Theorem 2—then we get the following condensed
version of Theorem 1.

Theorem 3. For bijections from 321- to 132-avoiding permutations we have the fol-

lowing equidistribution results. These results are maximal in the sense that adding

one more pair of equidistributed statistics from STAT to any of the results would

create a linear dependency among the statistics.

(11) Φ, Knuth-Richards, Krattenthaler, Mansour-Deng-Du, Simion-Schmidt

valley peak.i rmin rir last comp rank.r lir.i slmax.c.r slmax.i head.i
valley valley.i lmin ldr head comp.r rank ldr.i lir lir.i rmin

(9) Knuth-Rotem, Reifegerste

valley peak.i exc slmax.i head.i slmax.r.c rir lir.i last
valley valley.i des zeil ldr rdr rmin lmax m-ldr.i

(7) West

peak.i exc slmax.i slmax.r.c rir lir.i last
valley.i asc lir.i comp rmax ldr.i head

(5) Knuth

exc fix lir.i lir lis
exc fix rmin lmax n-rank

(1) Elizalde-Deutsch

fix
fix

In Section 2 we define the relevant statistics; in Section 3 we describe the bijec-
tions; in Section 4 we give a new recursive description of the bijection by Knuth and
Richards; in Section 5 we prove Theorem 2; and in Section 6 we prove Theorem 1.

2. Permutation statistics

The permutation π on {1, 2, . . . , n} that sends 1 to a1, 2 to a2, etc, we denote
π = a1a2 . . . an, and we call ai the i-th letter of π. A permutation statistic is simply
a function from permutations to N. For example, the permutation statistic asc is
defined thus: An ascent in π is a letter that is followed by a larger letter; in other
words, an ai such that ai < ai+1. By asc(π) we denote the number of ascents in π.
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Similarly, a descent is a letter followed by a smaller letter, and by des(π) we denote
the number of descents in π.

For words α and β over the alphabet N we define that α ≺ β if for all letters a
in α and all letters b in β we have a < b. For instance, 42 ≺ 569. A component of
π is a nonempty segment τ of π such that π = στρ with σ ≺ τ ≺ ρ, and such that
if τ = αβ and α ≺ β then α or β is empty. By comp(π) we denote the number
of components of π. For instance, comp(213645) = 3, the components being 21, 3,
and 645.

A left-to-right minimum of π is a letter with no smaller letter to the left of it;
the number of left-to-right minima is denoted lmin(π). The statistics right-to-left

minima (rmin), left-to-right maxima (lmax), and right-to-left maxima (rmax) are
defined similarly.

In the following table we define the remaining statistics that are of interest to
us. For reference we include the statistics already defined in the preceding few
paragraphs.

asc = number of ascent;

comp = number of components;

des = number of descents;

exc = number of excedances: positions i such that ai > i;

fix = number of fixed points: positions i such that ai = i;

head = first element: head(π) = a1;

last = last element: last(π) = an;

ldr = length of the leftmost decreasing run: largest i such that a1 > a2 >
· · · > ai;

lds = length of the longest decreasing sequence in a permutation;

lir = length of the leftmost increasing run: largest i such that a1 < a2 <
· · · < ai;

lis = length of the longest increasing sequence in a permutation;

lmax = number of left-to-right maxima;

lmin = number of left-to-right minima;

peak = number of peaks: positions i in π such that ai−1 < ai > ai+1;

rank = largest k such that ai > k for all i ≤ k (see [5]);

rdr = lir.r = length of the rightmost decreasing run;

rmax = number of right-to-left maxima;

rmin = number of right-to-left minima;

rir = ldr.r = length of the rightmost increasing run;

slmax = the number of letters to the left of second left-to-right maximum in π∞:
largest i such that a1 ≥ a1, a1 ≥ a2, . . . , a1 ≥ ai;

valley = number of valleys: positions i in π such that ai−1 > ai < ai+1;

zeil = rdr.i = length of the longest subword n(n− 1) . . . i (see [16]).

Let us also describe some of the derived statistics:

comp.r = number of reverse components: a reverse component is a nonempty
segment τ of π such that π = στρ with σ ≻ τ ≻ ρ, and such that if τ =
αβ and α ≻ β then α or β is empty;
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head.i = position of the smallest letter;

last.i = position of the largest letter;

lir.i = zeil.c = largest i such that 12 . . . i is a subword in π;

peak.i = number of letters ai that are to the right of both ai − 1 and ai + 1;

valley.i = number of letters ai that are to the left of both ai − 1 and ai + 1.

3. Bijections in the literature

In this section we describe the bijections, and we try to stay close to the original
sources when doing so. In what follows Sn(τ) is the set of τ -avoiding permutations
of length n, and Dn is the set of Dyck paths of length 2n.

3.1. Knuth’s bijection, 1973. Knuth [6, pp. 242–243] gives a bijection from 312-
avoiding permutations to “stack words”. Formulated a bit differently, it amounts
to a bijection from 132-avoiding permutations to Dyck paths. Knuth [7, pp. 60–
61] also gives a bijection from 321-avoiding permutations to Dyck paths. By let-
ting permutations that are mapped to the same Dyck path correspond to each
other, a bijection between 321- and 132-avoiding permutation is obtained—we call
it Knuth’s bijection.

We start by describing the bijection from 132-avoiding permutations to Dyck
paths. We shall refer to it as the standard bijection. (This bijection is the same as
the one given by Krattenthaler [8], who, however, gives a non-recursive description
of it; see Section 3.6.) Let π = πLnπR be a 132-avoiding permutation of length n.
Each letter of πL is larger than any letter of πR, or else a 132 pattern would be
formed. We define the standard bijection f recursively by f(π) = uf(πL)df(πR)
and f(ǫ) = ǫ. Here, and elsewhere, ǫ denotes the empty word/permutation. Thus,
under the standard bijection, the position of the largest letter in a 132-avoiding
permutation determines the first return to x-axis and vice versa. For instance,

f(7564213) = udf(564213) = uduf(5)df(4213) = uduuddudf(213)

= uduudduduf(21)d = uduudduduudf(1)d

= uduudduduududd

=
• ??
? • ??

? • ??
?

• ??
? •

��� • ??
? • ??

? •

��� •

��� • ??
?

•

��� •

��� •

��� •

��� •

As mentioned, Knuth also gives a bijection from 321-avoiding permutations to
Dyck paths: Given a 321-avoiding permutation, start by applying the Robinson-

Schensted-Knuth correspondence to it. This classic correspondence gives a bijection
between permutations π of length n and pairs (P,Q) of standard Young tableaux

of the same shape λ ⊢ n. As is well known, the length of the longest decreasing
subword in π corresponds to the number of rows in P (or Q). Thus, for 321-avoiding
permutations, the tableaux P and Q have at most two rows.

The insertion tableau P is obtained by reading π = a1a2 . . . an from left to right
and, at each step, inserting ai to the partial tableau obtained thus far. Assume that
a1, a2, . . . , ai−1 have been inserted. If ai is larger than all the elements in the first
row of the current tableau, place ai at the end of the first row. Otherwise, let m be
the leftmost element in the first row that is larger than ai. Place ai in the square
that is occupied by m, and place m at the end of the second row. The recording

tableau Q has the same shape as P and is obtained by placing i, for i from 1 to
n, in the position of the square that in the construction of P was created at step
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i (when ai was inserted). For example, the pair of tableaux corresponding to the
321-avoiding permutation 3156247 we get by the following sequence of insertions:

(

ǫ ǫ
)

→
(

3 1
)

→

(

1 1
3 2

)

→

(

15 13
3 2

)

→

(

156 134
3 2

)

→

(

126 134
35 25

)

→

(

124 134
356 256

)

→

(

1247 1347
356 256

)

.

The pair of tableaux (P,Q) is then turned into a Dyck path D. The first half, A,
of the Dyck path we get by recording, for i from 1 to n, an up-step if i is in the first
row of P , and a down-step if it is in the second row. Let B be the word obtained
from Q in the same way but interchanging the roles of u and d. Then D = ABr

where Br is the reverse of B. Continuing with the example above we get

D =
• ??
? • ??

? • ??
?

•

��� •

��� • ??
? • ??

? •

��� • ??
? • ??

?

•

��� •

��� •

��� •

��� •

Elizalde and Pak [5] use this bijection together with a slight modification of the
standard bijection to give a combinatorial proof of a generalization of the result
by Robertson et al. [12] that fixed points have the same distribution on 123- and
132-avoiding permutations. The modification they use is to reflect the Dyck path
obtained from the standard bijection with respect to the vertical line crossing the
path in the middle. Alternatively, the path can be read from the permutation
diagram as described in [5]. We follow Elizalde and Pak and apply the same mod-
ification. After reflection, the path f(7564213) above is the same as the path D in
the preceding example. Thus the image of the 321-avoiding permutation 3156247
under what we call Knuth’s bijection is the 132-avoiding permutation 7564213.

3.2. Knuth-Rotem’s bijection, 1975. Rotem [13] gives a bijection between 321-
avoiding permutations and Dyck paths, described below. Combining it with the
standard bijection gives a bijection from 321- to 132-avoiding permutations—we
call it Knuth-Rotem’s bijection.

A ballot-sequence b1b2 . . . bn satisfies the two conditions

(1) b1 ≤ b2 ≤ · · · ≤ bn;
(2) 0 ≤ bi ≤ i− 1, for i = 1, 2, . . . , n.

Let π = p1p2 . . . pn be a 321-avoiding permutation. From it we construct a
ballot-sequences b1b2 . . . bn: Let b1 = 0. For i = 2, . . . , n, let bi = bi−1 if pi is a
left-to-right maximum in π, and let bi = pi otherwise.

For the permutation π = 2513476 we get the ballot-sequences 0013446. This
sequence we represent by a “bar-diagram”, which in turn can be viewed as a lattice
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path from (0, 0) to (7, 7):

7

6 • •

5

4 • • •

3 • •

2

1 • •

0 • • •

7 •

6 • •

5 •

4 • • •

3 • •

2 •

1 • •

0 • • •

Rotating that path counter clockwise by 3π/4 radians we get

• ??
? • ??

? • ??
?

• ??
? •

��� • ??
? • ??

? •

��� •

��� • ??
?

•

��� •

��� •

��� •

��� •

In the previous subsection we saw that this path is f(7564213) where f is the
standard bijection. Thus the image of the 321-avoiding permutation 2513476 under
Knuth-Rotem’s bijection is the 132-avoiding permutation 7564213.

3.3. Simion-Schmidt’s bijection, 1985. Consider the following algorithm:

Input: A permutation σ = a1a2 . . . , an in Sn(123).
Output: A permutation τ = c1c2 . . . cn in Sn(132).

1 c1 := a1; x := a1

2 for i = 2, . . . , n:
3 if ai < x:
4 ci := ai; x := ai
5 else:
6 ci := min{ k | x < k ≤ n, k 6= cj for all j < i }

The map σ 7→ τ is the Simion-Schmidt bijection [14]. As an example, the 123-
avoiding permutation 6743152 maps to the 132-avoiding permutation 6743125.

3.4. Knuth-Richards’ bijection, 1988. Richards’ bijection [11] from Dyck paths
to 123-avoiding permutations is given by the following algorithm:

Input: A Dyck path P = b1b2 . . . b2n.
Output: A permutation π = a1a2 . . . an in Sn(123).

1 r := n+ 1; s := n+ 1; j := 1

2 for i = 1, . . . , n:
3 if bj is an up-step:
4 repeat s := s− 1; j := j + 1 until bj is a down-step
5 as := i
6 else:

7 repeat r := r − 1 until ar is unset
8 ar := i
9 j := j + 1

The Knuth-Richards bijection, from Sn(132) to Sn(123), is defined by

Knuth-Richards = Richards ◦ f,
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where f is the standard bijection from 132-avoiding permutations to Dyck paths,
and Richards is the algorithm just described. As an example, applying Knuth-
Richards’ bijection to 6743125 yields 5743612.

3.5. West’s bijection, 1995. West’s bijection [15] is induced by an isomorphism
between generating trees. The two isomorphic trees generate 123- and 132-avoiding
permutations, respectively. We give a brief description of that bijection: Given a
permutation π = p1p2 . . . pn−1 and a positive integer i ≤ n, let

πi = p1 . . . pi−1 n pi . . . pn−1;

we call this inserting n into site i. With respect to a fixed pattern τ we call site i of
π in Sn−1(τ) active if the insertion of n into site i creates a permutation in Sn(τ).

For i = 0, . . . , n − 1, let ai+1 be the number of active sites in the permutation
obtained from π by removing the i largest letters. The signature of π is the word

a0a1 . . . an−1.

West [15] showed that for 123-avoiding permutations, as well as for 132-avoiding
permutations, the signature determines the permutation uniquely. This induces a
natural bijection between the two sets. For example, the 123-avoiding permutation
536142 corresponds to the 132-avoiding permutation 534612—both have the same
signature, 343322.

3.6. Krattenthaler’s bijection, 2001. Krattenthaler’s bijection [8] uses Dyck
paths as intermediate objects. Permutations that are mapped to the same Dyck
path correspond to each other under this bijection.

The first part of Krattenthaler’s bijection is a bijection from 123-avoiding per-
mutations to Dyck paths. Reading right to left, let the right-to-left maxima in π
be m1, m2, . . . , ms, so that

π = wsms . . . w2m2w1m1,

where wi is the subword of π in between mi+1 and mi. Since π is 123-avoiding, the
letters in wi are in decreasing order. Moreover, all letters of wi are smaller than
those of wi+1.

To define the bijection, read π from right to left. Any right-to-left maximum mi

is translated into mi −mi−1 up-steps (with the convention m0 = 0). Any subword
wi is translated into |wi|+ 1 down-steps, where |wi| denotes the number of letters
of wi. Finally, the resulting path is reflected in a vertical line through the center of
the path. Alternatively, we could have generated the Dyck path from right to left.

The second part of Krattenthaler’s bijection is a bijection from 132-avoiding
permutations to Dyck paths. Read π = p1p2 . . . pn in Sn(132) from left to right
and generate a Dyck path. When pj is read, adjoin, to the path obtained thus far,
as many up-steps as necessary to reach height hj + 1, followed by a down-step to
height hj (measured from the x-axis); here hj is the number of letters in pj+1 . . . pn
which are larger than pj . This procedure can be shown to be equivalent to the
standard bijection from 132-avoiding permutations to Dyck paths.

For instance, Krattenthaler’s bijection sends the permutation 536142 in S6(123)
to the permutation 452316 in S6(132)—both map to the same Dyck path,

• ??
? • ??

?

•

��� • ??
? •

��� • ??
? • ??

?

•

��� •

��� •

��� • ??
?

•

��� •
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3.7. Reifegerste’s bijection, 2002.

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8
This figure illustrates Reifegerste’s bijection [10]. It
pictures the 321-avoiding permutation π = 13256847
and the 132-avoiding permutation π′ = 78564213, two
permutations that correspond to each other under
that bijection.
Let π = a1a2 . . . an be a 321-avoiding permutation,
and let E be the set of pairs

E = { (i, ai) | i is an excedance }.

For each pair (i, ai) in E, we place a square, called an E-square, in position (i, n+
1 − ai) in an n × n permutation matrix. (E uniquely determines π.) Next we
shade each square (a, b) of the matrix where there are no E-squares in the region
{(i, j) | i ≥ a, j ≥ b}, thus obtaining a Ferrer’s diagram. Finally, we get the
132-avoiding permutation π′ corresponding to π by placing dots (circles), row by
row starting from the first row, in the leftmost available shaded square such that
there are no two dots in any column or row. If (i, j) contains a dot, then π′(i) = j.

3.8. Elizalde-Deutsch’s bijection, 2003. Here is an outline of a bijection by
Elizalde and Deutsch [4]: Map 321- and 132-avoiding permutation bijectively to
Dyck paths; use an automorphism Ψ on Dyck paths; and match permutations with
equal paths.

We start by describing the automorphism Ψ. Let P be a Dyck path of length
2n. Each up-step of P has a corresponding down-step in the sense that the path
between the up-step and the down-step form a proper Dyck path. Match such pairs
of steps. Let σ in S2n be the permutation defined by σi = (i+ 1)/2 if i is odd, and
σi = 2n+1− i/2 otherwise. For i from 1 to 2n, consider the σi-th step of P . If the
corresponding matching step has not yet been read, define the i-th step of Ψ(P ) to
be an up-step, otherwise let it be a down-step. For example,

Ψ(uuduudududddud) = uuuddduduuddud.

The bijection ψ from 321-avoiding permutations to Dn is defined as follows. Any
permutation π in Sn can be represented as an n×n array with crosses in the squares
(i, π(i)). Given the array of π in Sn(321), consider the path with down- and right-

steps along the edges of the squares that goes from the upper-left corner to the
lower-right corner of the array leaving all the crosses to the right and remaining
always as close to the main diagonal as possible. Then the corresponding Dyck
path is obtained from this path by reading an up-step every time the path moves
down, and a down-step every time the path moves to the right. For example,

ψ(2314657) = uuduudududddud.

The bijection φ from 132-avoiding permutations to Dn is the standard bijection
followed by a reflection of the path with respect to a vertical line through the middle
of the path. For example,

φ(7432516) = uuduudududddud.

The Elizalde-Deutsch bijection, from Sn(321) to Sn(132), is defined by

Elizalde-Deutsch = φ−1 ◦ Ψ−1 ◦ ψ.
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As an example, it send 2314657 to 2314657.

3.9. Mansour-Deng-Du’s bijection, 2006. Let i be a positive integer smaller
than n. Let si : Sn → Sn act on permutations by interchanging the letters in
positions i and i + 1. We call si a simple transposition, and write the action of si
as πsi. So, π(sisj) = (πsi)sj . For any permutation π of length n, the canonical

reduced decomposition of π is

π = (12 . . . n)σ = (12 . . . n)σ1σ2 . . . σk,

where σi = shi
shi−1 . . . sti , hi ≥ ti, 1 ≤ i ≤ k and 1 ≤ h1 < h2 < · · · < hk ≤ n− 1.

For example, 415263 = (s3s2s1)(s4s3)(s5).
Mansour, Deng and Du [9] use canonical reduced decompositions to construct

a bijection between Sn(321) and Sn(231). They show that a permutation is 321-
avoiding precisely when ti ≥ ti−1 + 1 for 2 ≤ i ≤ k [9, Thm. 2]. They also show
that a permutation is 231-avoiding precisely when ti ≥ ti−1 or ti ≥ hi−j + 2 for
2 ≤ i ≤ k and 1 ≤ j ≤ i − 1 [9, Thm. 15]. Using these two theorems they build
their bijection, which is composed of two bijections: one from Sn(321) to Dn, and
one from Sn(231) to Dn.

For a Dyck path P , we define the (x + y)-labeling of P as follows: each cell in
the region enclosed by P and the x-axis, whose corner points are (i, j), (i+1, j−1),
(i+2, j) and (i+1, j+1) is labeled by (i+j)/2. If (i−1, j−1) and (i, j) are starting
points of two consecutive up-steps, then we call the cell with leftmost corner (i, j)
an essential cell and the up-step ((i − 1, j − 1), (i, j)) its left arm. We define the
zigzag strip of P as follows: If there is no essential cell in P , then the zigzag strip
is simply the empty set. Otherwise, we define the zigzag strip of P as the border
strip that begins at the rightmost essential cell. For example, the zigzag strip of the
Dyck path uuduuududddudduduuddud in Figure 1 is the shaded cell labeled by 9,
while for the Dyck path uuduuududdd (obtained from that in Figure 1 by ignoring
the steps 15 to 22) the zigzag strip is the shaded connected cells labeled by 2, 3, 4,
5 and 6.

Let Pn,k be a Dyck path of semi-length n containing k essential cells. We define
its zigzag decomposition as follows: The zigzag decomposition of Pn,0 is the empty
set. The zigzag decomposition of Pn,1 is the zigzag strip. If k ≥ 2, then we
decompose Pn,k = Pn,k−1Q, where Q is the zigzag strip of Pn,k and Pn,k−1 is the
Dyck path obtained from P by deleting Q. Reading the labels of Q from left to
right, ignoring repetitions, we get a sequence of numbers {i, i + 1, . . . , j}, and we
associate Q with the sequence of simple decompositions σk = sjsj−1 . . . si. For Pn,i

with i ≤ k − 1 repeat the above procedure to get σk−1, . . . , σ2, σ1. The zigzag
decomposition of Pn,k is then given by σ = σ1σ2 . . . σk.
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From the zigzag decomposition we get a 321-avoiding permutation π = (12 . . . n)σ
whose canonical reduced decomposition is σ. For the Dyck path P11,4 in Figure 1
we have

σ = (s3s2s1)(s4s3)(s6s5s4)(s9)

and the corresponding permutation in S11(321) is (4, 1, 5, 7, 2, 3, 6, 8, 10, 9, 11).
We will now describe a map from Dyck paths to 231-avoiding permutations. For

a Dyck path P , we define (x− y)-labeling of P as follows (this labeling seems to be
considered for the first time in [1]): each cell in the region enclosed by P and the
x-axis, whose corner points are (i, j), (i + 1, j − 1), (i + 2, j) and (i + 1, j + 1) is
labeled by (i− j + 2)/2. We define the trapezoidal strip of P as follows: If there is
no essential cell in P , then the trapezoidal strip is simply the empty set. Otherwise,
we define the trapezoidal strip of P as the horizontal strip that touches the x-axis
and starts at the rightmost essential cell. For example, the trapezoidal strip of the
Dyck path uuduuududddudduduuddud in Figure 2 is the shaded cell labeled by 9,
while for the Dyck path uuduuududdd (obtained from that in Figure 2 by ignoring
the steps 15 to 22) the zigzag strip is the down-most shaded strip with labels 1, 2,
3, 4, 5 and 6.

Let Pn,k be a Dyck path of semi-length n containing k essential cells. We de-
fine its trapezoidal decomposition as follows: The trapezoidal decomposition of Pn,0

is the empty set. The trapezoidal decomposition of Pn,1 is the trapezoidal strip.
If k ≥ 2, then we decompose Pn,k into Pn,k = Q1uQ2d, where u is the left arm
of the rightmost essential cell that touches the x-axis, d is the last down step of
Pn,k, and Q1 and Q2 carry the labels in Pn,k. Reading the labels of the trape-
zoidal strip of Pn,k from left to right we get a sequence {i, i+ 1, . . . , j}, and we set
σk = sjsj−1 . . . si. Repeat the above procedure for Q1 and Q2. Suppose the trape-
zoidal decomposition of Q1 and Q2 are σ′ and σ′′ respectively, then the trapezoidal
decomposition for Pn,k is σ = σ′σ′′σk.

From the trapezoidal decomposition we get a 231-avoiding permutation π =
(12 . . . n)σ whose canonical reduced decomposition is σ. For the Dyck path P11,4

in Figure 2 we have

σ = (s3s2)(s4s3s2)(s6s5s4s3s2s1)(s9)

and the corresponding permutation in S11(231) is (7, 1, 5, 4, 2, 3, 6, 8, 10, 9, 11).
The two maps involving Dyck paths described in this subsection induce a bijec-

tion from 321-avoiding to 231-avoiding permutations.

4. A recursive description of the Knuth-Richards bijection

We call a permutation π indecomposable if comp(π) = 1; otherwise we call π
decomposable. Equivalently, if we define the sum ⊕ on permutations by σ⊕τ = στ ′,
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where τ ′ is obtained from τ by adding |σ| to each of its letters, then a permutation
is indecomposable if it cannot be written as the sum of two nonempty permutations.

We shall describe, separately for 231- and 321-avoiding permutations, how to
generate the indecomposable permutations, thus inducing a bijection we call Φ.

For a permutation of length n to be 231-avoiding everything to the left of n has
to be smaller than anything to the right of n. Clearly, if there is at least one letter
to the left of n, then the permutation is decomposable (everything to the right of
n, including n, would form the last component). Thus a 231-avoiding permutation
of length n is indecomposable if and only if it starts with n.

To build an indecomposable 231-avoiding permutation of length n from a 231-
avoiding permutation of length n− 1 we simply prepend n. Let us call this map α.
For instance, α(2134) = 52134.

Given k indecomposable 231-avoiding permutations π1, π2, . . . , πk, we build the
corresponding permutation by summing: π1⊕π2⊕· · ·⊕πk. Given k indecomposable
321-avoiding permutations π1, π2, . . . , πk we build the corresponding permutation
by summing in reverse order: πk ⊕ πk−1 ⊕ · · · ⊕ π1.

Here is how we build an indecomposable 321-avoiding permutation π′ of length
n from a 321-avoiding permutation π of length n− 1:

π = 2 4 1 3 5 7 6 9 8

2 4 10 1 3 5 7 6 9 8

π′ = 2 4 7 1 3 5 9 6 10 8

In the first row we box the left-to-right maxima to the right of 1 that are not right-
to-left minima. Here, those are 7 and 9. In the second row we insert a new largest
letter, 10, immediately to the left of 1 and box it. Finally, in the third row, we
cyclically shift the sequence of boxed letter one step to the left, thus obtaining π′.
Let us call this map β.

The induced map Φ, between 231- and 321-avoiding permutations is then for-
mally defined by

Φ(ǫ) = ǫ; Φ(α(σ)) = β(Φ(σ)); Φ(σ ⊕ τ) = Φ(τ) ⊕ Φ(σ).

As an example, consider the permutation 5213476 in S6(231). Decompose it using
⊕ and α:

5213476 = 52134⊕ 21 = α(2134)⊕ α(1) = α(α(1) ⊕ 1⊕ 1)⊕ α(1).

Reverse the order of summands and change each α to β:

β(1)⊕ β(1⊕ 1⊕ β(1)) = 21⊕ β(1243) = 21⊕ 41253 = 2163475.

In conclusion, Φ(5213476) = 2163475.

5. Proof of Theorem 2

In the following five subsections we prove Theorem 2—one subsection for each
equality in the theorem.

5.1. Simion-Schmidt versus Φ. We prepare for this proof by characterizing the
Simion-Schmidt bijection in terms of left-to-right minima. (That characterization
can be said to be implicit in [14].) We also characterize the bijection Φ in terms of
right-to-left minima.
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Definition 4. For a permutation π = a1a2 . . . an of length n, define

lmin(π) =
{

(i, ai)
∣

∣ ai is a left-to-right minima in π
}

as the set of positions of left-to-right minima together with their values. Also, define

Sn/ lmin as the set of equivalence classes with respect to the equivalence induced by

lmin: that is, π is equivalent to τ if lmin(π) = lmin(τ). Similarly, define rmin, lmax

and rmax.

The cardinality of lmin(Sn) = {lmin(π) | π ∈ Sn} is easily seen to be Cn, the
n-th Catalan number. The following lemma strengthens that observation:

Lemma 5. Each equivalence class in Sn/ lmin contains exactly one permutation

that avoids 123 and one that avoids 132. In other words, both Sn(123) and Sn(132)
are complete sets of representatives for Sn/ lmin.

Proof. Given a set L in lmin(Sn), this is how we construct the corresponding per-
mutation τ = c1c2 . . . cn in Sn(132): For i from 1 to n, if (i, a) is in L let ci = a;
otherwise, let cj be the smallest letter not used that is greater than all the letters
used thus far.

Given a set L in lmin(Sn), this is how we construct the corresponding permu-
tation π = a1a2 . . . an in Sn(123): For i from 1 to n, if (i, c) is in L let ai = c;
otherwise, let aj be the largest letter not used thus far.

It is easy to see that filling in the letters in any other way than the two ways
described will either change the sequence of left-to-right minima or result in an
occurrence of 132 or 123. �

As an illustration of the preceding proof, with L = {(1, 6), (3, 3), (4, 2), (6, 1)} we
get 67324158 in S8(132) and 68327154 in S8(123).

Using Lemma 5 we can thus define a bijection between Sn(123) and Sn(132) by
letting π correspond to σ if lmin(π) = lmin(σ). However, this map is not new—it
is the Simion-Schmidt bijection:

Lemma 6. For π in Sn(123) and σ in Sn(132), the following two statements are

equivalent:

(1) Simion-Schmidt(π) = σ;
(2) lmin(π) = lmin(σ).

Indeed, looking at the algorithm defining the Simion-Schmidt bijection we see
that the variable x keeps track of the smallest letter read thus far; lines 3 and 4
express that left-to-right minima are left unchanged; and line 6 assign cj to be
the smallest letter not used that is greater than all the letters used thus far (as
described above).

Here is a characterization of Φ in terms of rmin:

Lemma 7. For π in Sn(231) and σ in Sn(321), the following two statements are

equivalent:

(1) Φ(π) = σ;
(2) (n+ 1− i, a) ∈ rmin(π) ⇐⇒ (n+ 1− a, i) ∈ rmin(σ).

Proof. That the latter statement characterizes a bijection from Sn(231) to Sn(321)
follows from Lemma 5, so all we need to show is that Φ is that bijection.

We use induction on n, the length of the permutation. The case n = 1 is obvious:
the right-to-left minimum (1, 1) goes to the right-to-left minimum (1, 1). For the
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induction step we distinguish two cases: π is decomposable and π is indecomposable
(see Section 4 for definitions).

Suppose that π is indecomposable, and hence π = α(σ) for some σ. By definition,
Φ(π) = β(Φ(σ)). The claim follows from the following equivalences:

(n+ 1− i, a) ∈ rmin(π) ⇐⇒ (n− i, a) ∈ rmin(σ)

⇐⇒ (n− a, i) ∈ rminΦ(σ)

⇐⇒ (n+ 1− a, i) ∈ rminΦ(π).

Here, the first equivalence is immediate from the definition of α—recall that all α
does is to insert a new largest letter in front of σ. The second equivalence holds by
induction. The third equivalence follows from the definition of β: the cyclic shift
involves no right-to-left minima and the space for the new letter is created to the
left of the letter 1; therefore, 1 is added to the indices of right-to-left minima.

Suppose π = τ ⊕ ρ is decomposable, and let k = |τ | and ℓ = |ρ|. By definition,
Φ(π) = Φ(ρ)⊕ Φ(τ). We have

(n+ 1− i, a) ∈ rmin(π)

⇐⇒ (n+ 1− i, a) ∈ rmin(τ) or (ℓ + 1− i, a− k) ∈ rmin(ρ) def’ of ⊕

⇐⇒ (k + 1− (i− ℓ), a) ∈ rmin(τ) or (ℓ+ 1− i, a− k) ∈ rmin(ρ) n = k + ℓ

⇐⇒ (k + 1− a, i− ℓ) ∈ rminΦ(τ) or (ℓ + 1− (a− k), i) ∈ rminΦ(ρ) induction

⇐⇒ (k + 1− a, i− ℓ) ∈ rminΦ(τ) or (n+ 1− a, i) ∈ rminΦ(ρ) n = k + ℓ

⇐⇒ (n+ 1− a, i) ∈ rmin(Φ(ρ)⊕ Φ(τ)) def’ of ⊕

from which the claim follows. �

We now turn to the proof of the first identity of Theorem 2. It is equivalent to

inverse ◦ Simion-Schmidt ◦ reverse ◦ Φ ◦ reverse = identity .

With all the preparation we have done, this is easy to prove:

(i, a) ∈ lmin(π) ⇐⇒ (n+ 1− i, a) ∈ rmin . reverse(π)

⇐⇒ (n+ 1− a, i) ∈ rmin .Φ. reverse(π)

⇐⇒ (a, i) ∈ lmin . reverse .Φ. reverse(π)

⇐⇒ (a, i) ∈ lmin . Simion-Schmidt . reverse .Φ. reverse(π)

⇐⇒ (i, a) ∈ lmin . inverse . Simion-Schmidt . reverse .Φ. reverse(π).

5.2. Simion-Schmidt versus Krattenthaler. In Lemma 6 we characterized the
Simion-Schmidt bijection. We shall do the same for Krattenthaler’s bijection. We
start by looking at the standard bijection from 132-avoiding permutations to Dyck
paths (as defined in Section 3.1).

Let P be a Dyck path of length 2n; index its up- and down-steps 1 through n.
For instance,

P = u1u2u3d1d2u4u5d3d4u6d5d6.

A peak in a Dyck path is an up-step directly followed by a down-step. Define

peak(P ) = { (i, j) | uidj is a peak in P }.

For instance, with P as before, we have peak(P ) = {(3, 1), (5, 3), (6, 5)}.
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Lemma 8. Let f be the standard bijection from Sn(132) to Dn. For π in Sn(132)
and P in Dn, the following two statements are equivalent:

(1) f(π) = P ;
(2) (i, n+ 1− a) ∈ lmin(π) ⇐⇒ (a, i) ∈ peak(P ).

Proof. Clearly, knowing peak(P ) is equivalent to knowing the path P . Thus the
second statement determines a bijection (by Lemma 5). It remains to show that
the first statement implies the second.

We shall use induction on the length of the permutation. Assume that πr is
indecomposable (with respect to ⊕). It is easy to see that π ends with its largest
letter. Hence, π = τn for some τ in Sn−1(132). Let Q = f(τ). Then P = f(π) =
uf(τ)d = uQd and

(i, n+ 1− a) ∈ lmin(π) ⇐⇒ (i, n+ 1− a) = (i, n− (a− 1)) ∈ lmin(τ)

⇐⇒ (a− 1, i) ∈ peak(Q)

⇐⇒ (a, i) ∈ peak(P ).

Assume that πr is decomposable, so πr = ρr ⊕ τr for some τ in Sk(132) and ρ
in Sℓ(132) with both k and ℓ positive and k + ℓ = n. Let Q = f(τ) and R = f(ρ).
Then P = f(π) = f(τ)f(ρ) = QR and

(i, n+ 1− a) ∈ lmin(π)

⇐⇒ (i, k + 1− a) ∈ lmin(τ) or (i − k, n+ 1− a) ∈ lmin(ρ)

⇐⇒ (i, k + 1− a) ∈ lmin(τ) or (i − k, ℓ+ 1− (a− k)) ∈ lmin(ρ)

⇐⇒ (a, i) ∈ peak(Q) or (a− k, i− k) ∈ peak(R)

⇐⇒ (a, i) ∈ peak(P ),

which completes the proof. �

Lemma 9. Let K be Krattenthaler’s bijection from Sn(123) to Dn as described

in Section 3.6. For π in Sn(123) and P in Dn, the following two statements are

equivalent:

(1) K(π) = P ;
(2) (i, n+ 1− a) ∈ rmax(π) ⇐⇒ (a, i) ∈ peak(P ).

Proof. This is an easy consequence of K’s definition. �

Putting Lemma 8 and Lemma 9 together we get the desired characterization of
Krattenthaler’s bijection.

Lemma 10. For π in Sn(123) and σ in Sn(132), the following two statements are

equivalent:

(1) Krattenthaler(π) = σ;
(2) (n+ 1− i, a) ∈ rmax(π) ⇐⇒ (n+ 1− a, i) ∈ lmin(σ).



CLASSIFICATION OF BIJECTIONS 17

Having established this characterization, the rest is easy. From the sequence of
equivalences

(i, a) ∈ lmin(π)

⇐⇒ (n+ 1− i, a) ∈ rmin . reverse(π)

⇐⇒ (a, n+ 1− i) ∈ lmax . inverse . reverse(π)

⇐⇒ (n+ 1− a, n+ 1− i) ∈ rmax . reverse . inverse . reverse(π)

⇐⇒ (i, a) ∈ lmin .Krattenthaler . reverse . inverse . reverse(π)

⇐⇒ (i, a) ∈ lmin . Simion-Schmidt−1 .Krattenthaler . reverse . inverse . reverse(π)

it follows that

Simion-Schmidt−1 ◦ Krattenthaler ◦ reverse ◦ inverse◦ reverse = identity

as desired.

5.3. Knuth-Richards versus Φ. Consider the Dyck path P = uudduududuuddd
of semi-length n = 7. Let us index its up- and down-steps 1 through n:

P = u1u2d1d2u3u4d3u5d4u6u7d5d6d7.

From this path we shall construct a permutation π = a1a2 . . . an. Scan P ’s down-
steps from left to right: if di is preceded by an up-step uj, then let an+1−j = i;
otherwise, let j be the largest value for which aj is unset, and let aj = i. Like this:

(1) d1 is preceded by the up-step u2; let a8−2 = a6 = 1.
(2) d2 is preceded by a down-step; let j = 7 and a7 = 2.
(3) d3 is preceded by the up-step u4; let a8−4 = a4 = 3.
(4) d4 is preceded by the up-step u5; let a8−5 = a3 = 4.
(5) d5 is preceded by the up-step u7; let a8−7 = a1 = 5.
(6) d6 is preceded by a down-step; let j = 5 and a5 = 6.
(7) d7 is preceded by a down-step; let j = 2 and a2 = 7.

The resulting permutation is π = 5743612. What we have just described is the
algorithm defining Richard’s bijection. Lines 3, 4 and 5 of that algorithm covers
the case when di is preceded by an up-step; lines 6, 7 and 8 the case when di is
preceded by a down-step.

Plainly, if di is preceded by an up-step ui then uidj is a peak in P . Moreover,
an+1−j = i is a left-to-right minimum in the corresponding permutation. To be
precise we have the following lemma.

Lemma 11. Let Richards be Richards’ bijection from Sn(123) to Dn as described

in Section 3.4. For π in Sn(123) and P in Dn, the following two statements are

equivalent:

(1) Richards(P ) = π;
(2) (n+ 1− i, a) ∈ lmin(π) ⇐⇒ (i, a) ∈ peak(P ).

Using Lemma 8 we get a characterization of the Knuth-Richards bijection:

Lemma 12. For π in Sn(132) and σ in Sn(123), the following two statements are

equivalent:

(1) Knuth-Richards(π) = σ;
(2) (i, a) ∈ lmin(π) ⇐⇒ (a, i) ∈ lmin(σ).
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The rest is easy. We have

(i, a) ∈ lmin(π) ⇐⇒ (a, i) ∈ lmin .Knuth-Richards−1(π)

⇐⇒ (n+ 1− a, i) ∈ rmin . reverse .Knuth-Richards−1(π)

⇐⇒ (n+ 1− i, a) ∈ rmin .Φ. reverse .Knuth-Richards−1(π)

⇐⇒ (i, a) ∈ lmin . reverse .Φ. reverse .Knuth-Richards−1(π)

and hence

reverse ◦Φ ◦ reverse ◦ Knuth-Richards−1 = identity .

5.4. Simion-Schmidt versus Mansour-Deng-Du. We will show that

Mansour-Deng-Du = reverse ◦ Simion-Schmidt ◦ reverse .

Due to Lemma 6 it suffices to prove this lemma:

Lemma 13. For π in Sn(132) and σ in Sn(123), the following two statements are

equivalent:

(1) Mansour-Deng-Du(π) = π′;

(2) rmin(π) = rmin(π′).

Proof. Assume that π and π′ are as above. According to the proofs of Corollaries [9,
Cor. 4] and [9, Cor. 16], the positions of right-to-left minima in π and π′ are the
same and, in particular, rmin(π) = rmin(π′). Thus we only need to prove that
right-to-left minima are preserved in value under the Mansour-Deng-Du bijection.
Equivalently, we need to prove that non-right-to-left-minima (n-rmin) are preserved
in value.

One can see that a letter a is an n-rmin in π if and only if the reduced de-
composition of π contains a run of simple transpositions (sa−1 . . . ). In particular,
a = 1 is always an n-rmin. Thus π = (12 . . . n)σ1 . . . σk and π′ = (12 . . . n)σ′

1 . . . σ
′

k

for k = n − rmin(π). That is, π and π′ have the same number of runs of simple
transpositions in the reduced decompositions and it remains to show that the first
letter of σj equals the first letter of σ′

j whenever 1 ≤ j ≤ k.

Let P be the intermediate Dyck path and consider its (x + y)- and (x − y)-
labellings of P . Note that cells touching the x-axis receive the same labels under
both labellings. From this, and the way that the zigzag and trapezoidal decompo-
sitions are constructed, it immediately follows that σk and σ′

k begin with the same
letter, namely, the label C of the rightmost cell.

We now proceed by induction on the number of essential cells. If there are no
essential cells, then the statement is true. Suppose we have k > 0 essential cells.
Remove the rightmost zigzag strip to get a Dyck path P ′. Note that |P ′| = |P | − 2
and that P ′ has k − 1 essential cells. Clearly, the permutation corresponding to
the (x + y)-labeling of P ′ is τ = (12 . . . (n − 1))σ1 . . . σk−1. Let the permutation
corresponding to the (x−y)-labeling of P ′ be τ ′′ = (12 . . . (n−1))σ′′

1 . . . σ
′′

k−1. From
the properties of the (x − y)-labeling, a cell labeled Q 6= C is the rightmost cell of
a trapezoidal strip in P if and only if Q is the rightmost cell of a trapezoidal strip
in P ′. This means that σ′

i and σ′′

i begin with the same letter for 1 ≤ i ≤ k − 1.
The desired result now follows from the induction hypothesis applied to P ′, τ and
τ ′′. �
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5.5. Reifegerste versus Knuth-Rotem. We will show that

(1) Reifegerste = inverse ◦ Knuth-Rotem ◦ inverse .

Reifegerste’s bijection is defined by values and positions of excedances. Suppose
that π = a1a2 . . . an is a 321-avoiding permutation and that π′ is the image of π
under Reifegerste’s bijection. The only permutation of length n without excedances
is 12 . . . n. As is easy to see, that permutation is fixed by both sides of identity (1).
So we can assume that π has at least one excedance. Say that has an excedance a
at position i, denoted (i, a). Also, let (j, b) be the excedance closest to the left of
(i, a). If no such excedance exists we define j = 0. Note that b < a, since otherwise
an occurrence of 321 would be formed.

Consider the Ferrer’s diagram corresponding to π in the definition of Reifegerste’s
bijection (shaded in the figure in Subsection 3.7 on page 10). The point (j+1, n+2−
a) is a corner in that diagram. It is sent to the left-to-right minimum (j+1, n+2−a)
in π′. Thus, we need to prove that an excedance (i, a) corresponds to a left-to-right
minimum (j + 1, n+ 2− a) under the right hand side of identity (1).

Because a > i, b > j and b < a it follows that both i and j are strict non-

excedances in π−1 with the property that there are no other strict non-excedances
between i and j. (A strict non-excedance between i and j would either bring an
occurrence of 321 in π or in π−1, or an occurrence of an excedance between a
and b in π.) Thus the ballot sequence β, obtained when applying Knuth-Rotem’s
bijection to π−1 will have the letter j + 1 in positions b = aj , aj+1, . . . , ai−1 and
the letter i + 1 in position a = ai. Let P be the Dyck path corresponding to β.
It remains to show that f−1, the inverse of the standard bijection, sends P to a
permutation having the letter j+1 in position n+2− a. After applying inverse we
would then have the letter n+ 2− a in position j + 1, the same outcome as when
applying Reifegerste’s bijection.

For the remainder of this proof we use induction on n, the length of the per-
mutation π. The smallest permutation that have an excedance is π = 21. In this
case, i = 1, j = 0 and a = 2. See Figure 3A. After rotating that diagram counter
clockwise by 3π/4 radians we read the Dyck path udud. The inverse of the standard
bijection, f−1, sends udud to the permutation π′ = 21. It has the letter j + 1 = 1
in position n+ 2− a = 2 as desired.

Assume that n > 2. Let D be the diagram constructed from the ballot-sequence
corresponding to π. Let P be the Dyck path we read from D. Let (r, s) be the
coordinate in D corresponding to the first return to the x-axis in P . In particular,
r = s. Consider the following four cases.
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Case 1, s = 0. This case is sketched in Figure 3B. Note that a > i + 1, and we
can remove the first step and the last step of the path, thus shifting the path one
step to the left. This corresponds to adjoining n to the right side of the permutation
obtained inductively from the reduced Dyck path. Moreover, the number of steps
is now 2(n− 1), i and j are unchanged, while a becomes a− 1. From the induction
hypothesis it follows that j +1 will be in position (n− 1)+ 2− (a− 1) = n+2− a,
as desired.

Case 2, n > s > i. From the definition of the standard bijection we see that the
permutation f−1(P ) is of the form π′ = σnτ where each letter of σ is larger than any
letter of τ ; the largest letter, n, is in position n−s+1; part σ is obtained inductively
from the portion of the path above the line y = s; and τ is obtained inductively
from the portion of the path below the line y = s. Applying the induction to τ we
see that the letter j + 1 is in position (s− 1) + 2− a = s+ 1− a. Thus, in π′, the
letter j + 1 is in position (s+ 1− a) + (n− s+ 1) = n+ 2− a.

Case 3, 0 < s < i. From the path we remove the part below the line y = s, we
remove the first and the last steps of the remaining path, and we shift the obtained
path so that it goes from (n − s − 1, n − s − 1) to (0, 0). The resulting path we
call P ′. It is responsible for building the standardization σ′ of σ in the outcome
permutation π′ = σnτ . (Here σ′ is obtained from σ by adding |τ | to each of its
letters.) Note that i, j and a in P become i−s, j−s and a−s−1 in P ′, respectively.
From the induction hypothesis applied to P ′ it follows that (j − s) + 1 will be in
position (n − s − 1) + 2 − (a − s − 1) = n + 2 − a in σ′. But (j − s) + 1 in σ′ is
(j−s)+1+s = j+1 in σ. Thus, in π′, the letter j+1 will be in position n+2−a.

Case 4, s = i. In this case i + 1 = a and we need to prove that the letter j + 1
is in position n+ 2− a = n+ 1− i. Remove from P the first and last steps of the
subpath from (n, n) to (i, i). Shift the path from (n, n − 1) to (i + 1, i) one step
to the left. Let P ′ denote the obtained path from (n− 1, n− 1) to (0, 0). Now we
apply f−1 to P and get a 132-avoiding permutation of length (n − 1) of the form
σ (n− 1) τ , where |τ | ≥ i. The first return in P ′ to the line y = x will be either at
(i, i) or above the line y = i. By the induction hypothesis, in σ(n − 1)τ , the letter
j + 1 is in position (n − 1) + 2 − a = n − i. This position is located to the right
of n− 1. Looking at the definition of the standard bijection we see that f−1(P ) is
σ(n − 1)τ with the largest letter, n, inserted immediately to the left of the letter
j + 1, causing it to appear in position n− i+ 1 = n+ 2− a.

6. Proof of Theorem 1

In this section we prove the equidistributions presented in Theorem 1. In light
of Theorem 2 it suffices to consider the following five bijections:

Simion-Schmidt, Reifegerste, West, Knuth and Elizalde-Deutsch .

For brevity we shall in this section write stat1 ≃ stat2 when, for all π in the
relevant domain, we have stat1(π) = stat2(ψ(π)), where ψ is the bijection under
consideration.

6.1. Simion-Schmidt’s bijection. Let π be a 123-avoiding permutation of length
n and let π′ be the image of π under the Simion-Schmidt bijection. By Lemma 6
we have lmin(π) = lmin(π′). In particular, lmin ≃ lmin. A three letter segment
abc is a valley precisely when a and b are left-to-right minima but c is not. Thus
valley ≃ valley. Similarly, we have ldr ≃ ldr and head ≃ head. Indeed, ldr is
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determined by the position of the first non-left-to-right minimum and head is the
first left-to-right minimum.

• comp.r ≃ comp.r: Suppose that π = AB where B is the rightmost reverse
component. Then B = mC where m is a left-to-right minimum in π. It follows that
π′ = A′B′ in which A′ and B′ are the images, under Simion-Schmidt’s bijection,
of A and B, respectively. Because the Simion-Schmidt bijection is an involution it
also follows that B′ is the rightmost reverse component in π′. By induction on the
number of reverse components we thus have comp.r ≃ comp.r.

• slmax.c ≃ lir: The statistic slmax.c is the position of the second left-to-right
minimum (it is defined to be n if there is only one left-to-right minimum). Suppose
π = a1Aa2B where a1 and a2 are the two leftmost left-to-right minima (the case
π = 1 . . . n is trivial). Note that each letter in A is larger than a1 and a2. We know
that π′ = a1A

′a2B
′ and |A| = |A′|. To avoid the pattern 132 the segment A′ must

be increasing. Thus slmax.c ≃ lir.
• slmax.i.r ≃ lir.i: The statistic slmax.i.r is one less than the minimal i such that

the letter i is to the left of the letter 1. Note that such an i in π must be a left-to-
right minimum. Suppose slmax.i.r(π) = i−1 and i ≤ n (the case slmax.i.r(π) = n is
trivial). Then i and 1 are two consecutive left-to-right minima in π. Consequently,
i and 1 are two consecutive left-to-right minima in π′. Thus the letters 2, 3, . . . , i−1
must be to the right of 1 in π′. To avoid forming an occurrence of 132, those letters
must also be in increasing order. Thus lir.i(π′) = i− 1.

• ldr.i ≃ ldr.i: By definition ldr.i(π) is the largest i such that i, i− 1, . . . , 1 is a
subword in π. In particular, i+1, if it exists, is to the right of i in π. Suppose that
ldr.i(π) = i. Clearly, the letters i, i − 1, . . . , 1 are consecutive left-to-right minima
in π and i + 1 is a non-left-to-right minimum. Thus i, i − 1, . . . , 1 is a subword in
π′ and i+ 1 is to the right of i in π′; hence ldr.i(π′) = i.

• head.i.r ≃ rmin: Plainly, head.i.r(π) = n − i + 1 where i is the position of 1
in π. Let π′ = σ1τ . The letter 1 is in the same position in π′ as it is in π and so
|τ | = n− i. To avoid 132 the letters of τ must be in increasing order. The sequence
of right-to-left minima in π′ is thus simply 1τ and therefore head.i.r(π) = rmin(π′).

• valley.i ≃ valley.i: By definition, valley.i(π) is the number of letters i in π such
that i is to the left of both i − 1 and i + 1. Suppose i in π is one of those letters
counted by valley.i(π). To avoid 123 the letter i must be a left-to-right minimum.
Thus i− 1 is a left-to-right minimum too, but i+1 is not. Since lmin(π) = lmin(π′)
this observation translates to π′. That is, in π′, the letters i and i − 1 are left-to-
right minima whereas i + 1 is not. Thus i + 1 is to the right of i in π′ and the
letter i in π′ is counted by valley.i(π′). Because the Simion-Schmidt bijection is an
involution it is easy to see that no i which is not counted by valley.i(π) contributes
to valley.i(π′).

• rank ≃ rank: Suppose that rank(π) = k and π has a in position k + 1. We
distinguish two cases based on whether a is a left-to-right minimum. If a is a non-
left-to-right-minimum, then k+1 is the left-to-right minimum closest to a in π from
the left. Since lmin(π) = lmin(π′) we have rank(π′) = k. On the other hand, if a
is a left-to-right minimum, then a ≤ k + 1 and π′ will have the same left-to-right
minimum, a, in position k + 1. Thus rank(π′) = k in this case as well.

6.2. Reifegerste’s bijection. Let π = a1a2 . . . an be a 321-avoiding permutation
of length n and let π′ be the image of π under Reifegerste’s bijection. That exc ≃ des
was proved in [10].
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• valley ≃ valley: A 321-avoiding permutation is a shuffle of two increasing
subwords. From this one can see that if aiai+1ai+2 is a valley in π, then ai is an
excedance and ai+1 is a non-excedance. Thus, in the permutation matrix corre-
sponding to π, there is an E-square in the i-th row but no E-square in the (i+1)-th
row. It follows that the Ferrer’s diagram has a corner in the (i + 1)-th row. Thus
a′ia

′

i+1a
′

i+2 is a valley in π′ = a′1a
′

2 . . . a
′

n. (The dot in row i + 1, corresponding to
the letter a′i+1, will be to the left of the dots in rows i and (i + 2), corresponding
to the letters a′i and a

′

i+2, respectively).
• peak.i ≃ valley.i: By definition, peak.i(π) is the number of letters a in π to

the right of both a− 1 and a+ 1; and valley.i(π) is the number of letters a in π to
the left of both a− 1 and a+1. If i is counted by peak.i, then i is a non-excedance
while i + 1 is an excedance; otherwise an occurrence of 321 is formed. Thus we
have an E-square in column n− i, but no E-square in column n− i+ 1. Not also
that there is a column n − i + 2 (corresponding to the letter i − 1). Thus column
n − i + 1 is not the rightmost column of the matrix and it contains a corner of
the Ferrer’s diagram. So peak.i counts the columns that contain a corner but no
E-squares, excluding the rightmost column. In the construction of π′ each corner
with the properties described above gives rise to a letter i in π′ to the left of i − 1
and i + 1. Indeed, such a corner has an E-square in the column immediately to
its left and no E-square in the column immediately to its right; consequently, the
points corresponding to i− 1 and i+ 1 in π′ will be below the point corresponding
to i in π′. Thus peak.i ≃ valley.i.

• slmax.i ≃ zeil: The letter between the two leftmost left-to-right maxima in
a 321-avoiding permutation is an initial segment of 123 . . . . Hence slmax.i is the
length of the maximal initial segment of the form 23 . . . i. Moreover, each of the
letters counted by slmax.i is an excedance. Thus we have E-squares in positions
(ℓ, n− ℓ) for ℓ = 1, 2, . . . , i − 1 and no E-square in position (k, n − k). Thus π′ is
of the form π′ = n(n − 1)(n − 2) . . . (n − k + 2)A(n − k)B(n − k + 1)C, where A,
B, and C are some words. Clearly, zeil(π′) = k = slmax.i(π).

• head.i ≃ ldr: The statistic head.i(π) is the position of 1 in π. Say this position
is i. Then row i of the permutation matrix corresponding to π is the topmost
row that does not contain an E-square. Thus, in π′, the first i letters will be in
decreasing order, while in position i there will be an ascent (unless i = n). Thus
ldr(π′) = i.

• slmax.r.c ≃ rdr: Let the right-to-left minima of π, read from right to left,
be r1, r2, . . . , rk. One can see that slmax.r.c is one more than the number of
letters between r1 and r2. (To make sure there is at least two left-to-right min-
ima we can assume that a 0 stays in front of π when considering this statistic.)
To avoid the pattern 321 the letters between r1 and r2 must be the largest let-
ters in π, and thus all of them are excedances. Thus, in the permutation ma-
trix corresponding to π, there will be E-squares in positions (i, n − i) for i =
n − 1, n − 2, . . . , n − (slmax.r.c(π) − 1) and there will be no E-squares in the
(n− slmax.r.c(π))-th row. In turn, this guarantees that the 132-avoiding permuta-
tion π′ ends with j(slmax.r.c(π) − 1)(slmax.r.c(π)− 2). . . 1, where j, if it exists, is
strictly larger than slmax.r.c(π). To avoid 132 this segment must be preceded by a
letter smaller than j. Thus rdr(π′) = slmax.r.c(π).

• rir ≃ rmin: Let rir(π) = i. We have i = n only if π = π′ = 12 . . . n, and
then, trivially, rir(π) = rmin(π′) = n. Assume i < n. The letters in the rightmost
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increasing run are non-excedances while the letter immediately to the left of that run
is an excedance. Thus the bottom-most E-square is in row n− i in the permutation
matrix. The dots placed in rows n− i + 1, n− i+ 2, . . . , n when creating π′ gives
the sequence of right-to-left minima in π′, and thus rmin(π′) = i.

• lir.i ≃ lmax: Let lir.i(π) = i. We have i = n only if π = π′ = 12 . . . n, and
then, trivially, lir.i(π) = lmax(π′) = n. Assume i < n. By definition, i is the
largest positive integer such that 1, 2, . . . , i is a subword of π. Since π is the shuffle
of two increasing sequences, i + 1 is the leftmost excedance in π. The E-square
corresponding to i+1 in the permutation matrix is placed in column n− i, leaving
i columns to the right of it. When constructing π′ each of those i columns get a
dot, beginning at the position (1, n− i+ 1) and going in the South-East direction.
Those dots give the sequence of left-to-right maxima in π′, and thus lmax(π′) = i.

• last ≃ m-ldr.i: Note that ldr.i(π) is the largest i such that i, (i− 1), . . . , 1 is a
subword in π. The case π = π′ = 12 . . . n is trivial. Suppose i < n and last(π) = i.
To avoid the pattern 321, the letters i+ 1, i+ 2, . . . , n must form a subword of π,
and clearly each of them is an excedance. Therefore the n− i leftmost columns of
the permutation matrix corresponding to π contain E-squares but the (n− i+1)-th
column does not contain an E-square. From this, and the way π′ is constructed, it
immediately follows that (n − i + 1), (n − i), . . . , 1 is the longest subword of π′ of
the sought type. Thus m-ldr.i(π′) = i.

6.3. West’s bijection. Recall that West’s bijection is induced by an isomorphism
between generating trees. The two isomorphic trees generate 123- and 132-avoiding
permutations, respectively. However, for the purpose of this proof we shall generate
321-avoiding permutations instead of 123-avoiding ones. This change is reflected
in positions of active sites: In the 123-avoiding case the active sites are all the
positions to the left of the leftmost ascent and the position in between the two
letters of the leftmost ascent. In the 321-avoiding case the active sites are all the
positions to the right of the rightmost ascent and the position in between the two
letters of the rightmost descent.

The active sites in a 132-avoiding permutation are the leftmost position and
every position immediately to the right of right-to-left maxima.

All the proofs below are by induction on the length of the permutation, with
easily verifiable base cases. Let π be a 321-avoiding permutation of length n. Let
π′ be the image of π under the modified version of West’s bijection as described
above.

• peak.i ≃ valley.i: By definition, peak.i(π) is the number of letters a in π to
the right of both a − 1 and a + 1; and valley.i(π′) is the number of letters a in π′

to the left of both a− 1 and a+ 1.
Case 1. Assume that π ends with n. Then π′ begins with n. Inserting n+ 1 to

the right of n in π does not change peak.i. Inserting n + 1 to the left of n in π′

does not change valley.i. Inserting n+1 in any other position in π and π′ increases
peak.i and valley.i by 1.

Case 2. Assume that π does not end with n. To avoid the pattern 321, the letter
n must be the the last letter of the rightmost descent. Thus n is not the leftmost
letter in π′, and to avoid the pattern 132, the letter n− 1 must be to the left of n.
It follows that inserting n + 1 in an active site of π and π′, respectively, does not
change peak.i and valley.i, respectively.
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• exc ≃ asc: Inserting n + 1 at the end of π does not change the number of
excedances. Similarly, inserting n+1 at the beginning of π′, the number of ascents
is not changed. In all other cases, the number of excedances in π and the number
of ascents in π′ is increased by 1.

• slmax.i ≃ lir.i: We see that slmax.i(π) is one more than the length of the
maximum initial segment of the form 234 . . . in π. Also, lir.i(π′) is the largest i
such that 12 . . . i is a subword of π′.

Case 1. Assume that π = 234 . . . n1. Using induction it is easy to verify that
π′ = 12 . . . n. Inserting n+1 at the end of π does not change slmax.i, and inserting
n + 1 at the beginning of π′ does not change lir.i. On the other hand, inserting
n+ 1 between n and 1 in π increases slmax.i by 1, and inserting n+ 1 at the end
of π′ increases lir.i by 1.

Case 2. Assume that π 6= 234 . . . n1, and thus π′ 6= 12 . . . n. Inserting n+ 1 will
not change slmax.i in π and it will not change lir.i in π′.

• slmax.r.c ≃ comp: By definition slmax.r.c(π) = 1 if the letter n is not in
position n−1, and slmax.r.c(π) is one more than the length of the maximal segment
of the form i(i+ 1) . . . n if n is in position n− 1.

Inserting n+ 1 at the end of π′ (creating two active sites) increases the number
of components by 1. The corresponding action on π (creating two active sites) is
inserting n+ 1 in position n; that increases slmax.r.c by 1. Inserting n+ 1 in any
other active site of π′ will create an indecomposable permutation (n+1 will be to
the left of 1). The corresponding operation on π places n+1 in a position different
from n, and thus slmax.r.c will be 1.

• rir ≃ rmax: A proof is straightforward from the location of active sites in
π and π′: the (number of) active sites in π and π′ essentially give the rir- and
rmax-statistics, respectively.

• lir.i ≃ ldr.i: By definition lir.i(π) is the largest i such that 12 . . . i is a subword
of π, and ldr.i(π′) is the largest i such that i(i− 1) . . . 1 is a subword of π′.

It is easy to see, by induction, that π = 12 . . . n corresponds to π′ = n(n−1) . . . 1.
Inserting n+1 at the end of π and at the beginning of π′ will increase lir.i and ldr.i
by 1, respectively. For any other insertions and any other π and π′, the statistics
lir.i and ldr.i will not change.

• last ≃ head: Inserting n + 1 in π changes the last letter only if the insertion
is at the end. Similarly, inserting n+1 in π′ changes the leftmost letter only if the
insertion is at the beginning.

6.4. Knuth’s bijection. Elizalde and Pak [5] proved that exc ≃ exc, fix ≃ fix and
lis ≃ n-rank. Let π be a 321-avoiding permutation of length n and let π′ be the
image of π under Knuth’s bijection.

• lir ≃ lmax: If lir(π) = i then the first row of the recording tableau begins
with 1, 2, . . . , i, and i + 1 (if it exists) is the leftmost element in the second row.
Thus the statistic lir translates to the statistic “length of the rightmost slope”
(segment of down-steps) in the corresponding Dyck path. After reflection, that
statistic becomes “length of the leftmost slope” (segment of up-steps). The up-
steps in the leftmost slope have corresponding down-steps such that between these
steps one has a proper Dyck path. In particular, the down-step corresponding to
the leftmost up-step gives the first return to x-axis, giving the position of n, the
rightmost left-to-right maxima, in π′. Proceeding recursively it is easy to see that
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in general the up-steps in the leftmost slope read from left to right correspond to
the left-to-right maxima in π′ read from right to left. This gives the desired result.

• lir.i ≃ rmin: The statistic lir.i is the length of the longest subword of the
form 12 . . . i. So, if lir.i(π) = i, the first row of the insertion tableau begins with
1, 2, . . . , i, and i + 1 (if it exists) is the leftmost element in the second row. Thus
the statistic lir.i translates to the statistic “length of the leftmost slope” in the
corresponding Dyck path. After reflection, that statistic becomes “length of the
rightmost slope”. Returns to x-axis in the Dyck path correspond to reverse com-
ponents in π′. Consider the part D′ of the Dyck path between the last return and
next to last return to x-axis. The first up-step of D′ corresponds to the rightmost
down-step in the rightmost slope, and it corresponds to the rightmost letter, say
a, in π′. The letter a is the largest letter in the rightmost reverse component of
π′, and thus it is a right-to-left minimum. Proceeding recursively we see that the
next to last down-step in the rightmost slope corresponds to the second right-to-left
minimum from the right, and so on.

6.5. Elizalde-Deutsch’s bijection. Elizalde and Deutsch [4] proved that fix ≃
fix.
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