Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

(2+2)-free posets, ascent sequences and pattern avoiding permutations

Bousquet-Melou, Mireille and Claesson, Anders and Dukes, Mark and Kitaev, Sergey (2010) (2+2)-free posets, ascent sequences and pattern avoiding permutations. Journal of Combinatorial Theory Series A, 117 (7). pp. 884-909.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We present bijections between four classes of combinatorial objects. Two of them, the class of unlabeled (2+2)-free posets and a certain class of involutions (or chord diagrams), already appeared in the literature, but were apparently not known to be equinumerous. We present a direct bijection between them. The third class is a family of permutations defined in terms of a new type of pattern. An attractive property of these patterns is that, like classical patterns, they are closed under the action of the symmetry group of the square. The fourth class is formed by certain integer sequences, called ascent sequences, which have a simple recursive structure and are shown to encode (2+2)-free posets and permutations. Our bijections preserve numerous statistics. We determine the generating function of these classes of objects, thus recovering a non-D-finite series obtained by Zagier for the class of chord diagrams. Finally, we characterize the ascent sequences that correspond to permutations avoiding the barred pattern View the MathML source and use this to enumerate those permutations, thereby settling a conjecture of Pudwell.