Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Interpretation of wastage mechanisms of materials exposed to elevated temperature erosion-corrosion using erosion—corrosion maps and computer graphics

Stack, M.M. and Bray, L. (1995) Interpretation of wastage mechanisms of materials exposed to elevated temperature erosion-corrosion using erosion—corrosion maps and computer graphics. Wear, 186-187 (1). pp. 273-283. ISSN 0043-1648

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

One of the most significant advances in the study of erosion-oxidation and wear in recent years has been the development of theoretical methods to construct maps where the change in erosion or wear mechanism is given as a function of typically two parameters. This approach has important implications for optimization of process parameters in wear and in erosion-corrosion. The direct application of such work is in process engineering where guidelines on the control of parameters to minimize erosion-corrosion are practically non-existent. Although there have been a range of excellent approaches towards the development of erosion-oxidation maps there have been some areas which have not been addressed. Firstly, because erosion-corrosion involves a wide range of parameters, the maps which have been developed to date have only considered the effects of temperature and velocity. In addition, there has been no significant attempt to combine variables on the maps, or incorporate a materials selection parameter on the maps. Finally, there have been few attempts to demonstrate the physical significance of the regimes on the maps, in order to clarify the mechanism of damage on the surface. The object of this research is to address the above areas in the development work on the maps to date. It is shown how the maps can be used to show metal recession as opposed to erosion rates by modifying the regime definitions proposed to date. The relative advantages and limitations of the models developed to date will be discussed.