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Abstract 

This paper presents the shakedown analysis of welded pipes subjected to a constant internal pressure 

and a varying thermal load. The Linear Matching Method (LMM) is applied to investigate the upper 

and lower bound shakedown limits of the pipes. Individual effects of i) geometry of weld metal, ii) 

ratio of inner radius to wall thickness and iii) all material properties of Weld Metal (WM), Heat 

Affected Zone (HAZ) and Parent Material (PM) on shakedown limits are investigated. The ranges of 

these variables are chosen to cover the majority of common pipe configurations. Corresponding 

individual influence functions on the shakedown limits are generated. These are then combined to 

allow the creation of a safety shakedown envelope, which can be used for the design of any welded 

pipes within the specified ranges. The effect of temperature dependent yield stress (in PM, HAZ and 

WM) on these shakedown limits is also investigated.  
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1. Introduction 

The circumferential butt welded pipes are widely used in many industries and usually subjected to 

complex varying thermal and mechanical loads [1]. Under such loads, the pipes may fail either from 

the accumulated plastic deformations during the increasing load cycles or from the reverse plastic 

deformations. The former is known as ratchetting or incremental plasticity, which leads structures to 

incremental collapse; the latter is named reverse plasticity or alternating plasticity, which gives rise to 

a local low cycle fatigue. Plastic strain generated in a component which does not lead to either of 

these two mechanisms is referred to as shakedown, and this concept is widely used in the design of 

pressure vessels and piping systems.  

 

Shakedown analysis of loaded structures has been investigated by many researchers in past decades 

[2-23].  The complexity of shakedown means that analytical solutions are rare, and thus incremental 
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Finite Element Analysis (FEA) is widely used. Incremental FEA can only show if elastic shakedown, 

plastic shakedown or ratchetting occurs, and therefore many calculations are required to generate the 

Bree-like diagram [2].  

 

In order to overcome the difficulties of the step-by-step elasto-plastic FEA, a number of direct 

methods based upon the Koiter's [3] kinematic and the Melan's [4] static theorems have been 

developed including: i) Uniform Modified Yield (UMY) surface method [5]; ii) the Generalized Local 

Stress Strain (GLOSS) r-node method [6]; iii) the Elastic Compensation Method (ECM) [7, 8]; iV) 

mathematical programming methods [9-11]; and V) the Linear Matching Method (LMM) [12-17]. 

The LMM has been shown to give accurate solutions to complex geometries and load histories [12, 

13]. The LMM ABAQUS user subroutines [18] have been consolidated by the R5 [19] research 

program of British Energy Generation Ltd. (BEGL) to the commercial standard, and are now in 

extensive use for design and/or assess power plant components.  

 

In this paper, the linear matching method is used to address upper bound and lower bound shakedown 

limits for a circumferential welded pipe subjected to a constant internal pressure and a varying 

thermal load history. The welded pipe is composed of three parts: i) the Parent Material (PM), ii) the 

Weld Metal (WM) and iii) the Heat Affected Zone (HAZ). Each of them is assumed to be an 

isotropic, elastic perfectly plastic material which satisfies the von Mises yield criterion.  

 

The remainder of this paper comprises five parts. In section 2, the linear matching method is briefly 

described. Section 3 presents the pipe geometry and Material properties. This is followed by FE 

model of the pipe. Section 5 presents the shakedown analyses for the welded pipe. It also discusses 

the effects of WM geometry, ratio of inner radius to wall thickness and finally material properties of 

WM, HAZ and PM on the reverse plasticity limit, limit load and the gradient of the ratchet limit line, 

and offers equations characterising these effects. These equations are combined to generate a safety 

shakedown envelope for welded pipes within the ranges of the equations.  

 

2. Linear Matching Method 

The Linear Matching Method (LMM) states that if a linear material offers a stress which is the same 

as a yield condition for a given strain rate history iε& , shakedown solutions may be developed from 

linear solutions with a spatially varying shear modulus, μ  [14,20-23]. For the von Mises yield 

criterion the relevant linear material is incompressible and the shear modulus μ is given by the 

matching condition 
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 where )(θσ y  is the temperature dependent yield stress and 
i

ε& is the effective strain rate.  

Consider a body of volume, V, with a surface area S . The body is subjected to mechanical loads, 
),( txP iλ , over a fraction of the surface area, TS , and varying thermal loads ),( txiλθ . λ is a load 

multiplier. These loads are applied over a time cycle tt Δ≤≤0 . A zero displacement rate condition is 

applied over the remainder of the surface area, uS  such that 0=iu& . The temperature independent 

Young's modulus E and Poisson's ratio ν are adopted throughout, as the effects of temperature 

dependent elastic properties are not significant and hence ignored. The corresponding linear elastic 

stress history ijσ̂ is then given as 

                          ),(ˆ),(ˆ),(ˆ txtxtx i
P
ijiijiij σλσλσλ θ +=                                                                   (2) 

where ),(ˆ txiij
θσ  and ),(ˆ txi

P
ijσ  are elastic stress histories corresponding to ),( txiθ  and ),( txP i , 

respectively. The cyclic stress history ),( txiijσ  over the time cycle is given by 

              )(),(ˆ),( iijiijiij xtxtx ρσλσ +=                                                                    (3) 

where )( iij xρ  is a constant residual stress.        

On the basis of the Koiter's  theorem [3], the upper bound shakedown limit UBλ  is given as 
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where ijε&  is a kinematically admissible stain rate and ijijεεε &&& 3
2=  is the effective strain rate. Then 

sUB λλ ≥ , where sλ  is the exact shakedown limit.  

Based on the Melan's theorem [4], the cyclic stress ),( txiijσ should be equal to or less than the yield 

stress at all points in the body, i.e. 

                                  0))(),(ˆ( ≤+ iijiijLB xtxf ρσλ                                                                     (5) 

where LBλ  is the lower bound shakedown limit. Then sLB λλ ≤ . 

The linear matching method may be implemented in ABAQUS for a given load history. At each 

iteration, a linearised problem is solved for the changes of the stress, stain and displacement. At each 

integration point user sub-routines compute i) the varying shear modulus μ ; ii) the Jocobian matrix;  

iii) the constant residual stress and iV) the updated stress for a given strain increment. Hence, the 

upper bound shakedown limit at each iteration may be calculated by integrating equation (4) over the 
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volume, and is then used in the next iteration. The lower bound shakedown limit can be determined by 

checking the yield condition for all integration points[24].  

 

3. Welded Pipe Geometry and Material Properties         

Consider a circumferential welded pipe, including a single V butt weld with V root, subjected to a 

constant internal pressure P  (with closed end conditions) and a cyclic thermal load history (Fig. 1). 

The inhomogeneous pipe includes three different material domains - Parent Material (PM), Weld 

Metal (WM) and Heat Affected Zone (HAZ), each of which is isotropic, elastic perfectly plastic and 

satisfies the von Mises yield criterion. The initial residual stress in the pipe due to the welding process 

is considered to be zero due to post weld heat treatment. The length L , inner radius iR , wall thickness 

t  and other five geometry parameters are shown in Fig. 1 and Table 1. The material properties 

including the yield stress yσ , Young’s modulus E , Poisson’s ratio ν , conductivity k  and coefficient 

of thermal expansion α  adopted in  this paper for the baseline calculation are given in Table 2, where 

HAZ and PM share same values of yσ , E  and α ; and WM, HAZ and PM have same values of k  

and ν . 

 

 4. Finite Element Modelling 

Fig. 2 shows the two dimensional axisymmetric  model used in this analysis, with a symmetry 

condition applied in the axial direction. The closed end condition of the pipe is simulated by applying 

an equivalent axial tension )2/( 22 ttRPRq ii +=  and the end of the pipe is constrained to remain in-

plane, simulating the expansion of a long pipe.  

It is assumed that the ambient air temperature outside of the pipe is 0θ , and the operating temperature 

of the fluid contained within the pipe fluctuates between ambient and a higher value, θθ Δ+0  (Fig. 3). 

Due to the dissimilar material in the pipe, the applied cyclic thermal loading may be constructed by 

three thermal stress extremes: i) a thermal stress field produced by a linear temperature gradient 

through the wall thickness; ii) a thermal stress field occurring at the highest uniform temperature due 

to the different thermal expansion coefficients and Young's modulus between the PM and WM; and 

iii) a zero thermal stress field simulating a uniform ambient temperature. If 0θ  is zero, the maximum 

effective elastic thermal stresses for these three extremes can be determined by the maximum 

temperature difference θΔ . Hence the thermal load history can be characterised by θΔ . 
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In this paper, the Abaqus type CAX8R 8-node biquadratic axisymmetric quadrilateral elements with 

reduced integration are used for structural analysis and DCAX8 8-node quadratic axisymmetric heat 

transfer quadrilateral elements with reduced integration scheme are used for the heat transfer analysis 

(Fig. 4).  

 

5. Results and Discussions 

5.1. Upper and lower bound shakedown limits  

Fig. 5a shows von Mises effective elastic stress fields of the welded pipe subjected to an internal 

pressure MPaPP 230 == , which is applied as a reference mechanical load. The elastic stress fields of 

the welded pipe subjected to a linear temperature gradient through the wall thickness 

( Co500 =Δ=Δ θθ ) is referred to as the reference thermal stress, which is shown in Fig. 5b.  The 

elastic stress fields corresponding to the highest uniform temperature of Co50  is given in Fig. 5c. This 

elastic thermal stress is produced by the material mismatch, which may play an important role in the 

shakedown limits.  

Fig. 6 shows converged upper bound shakedown limits of the welded pipe, where a normalised 

internal pressure 0/ PP  and a normalised temperature range
0/ θθ ΔΔ  are chosen as an ordinate and an 

abscissa in the diagram respectively. MPaP 230 =  and Co500 =Δθ  are the reference internal pressure 

and the reference temperature range, respectively. The interaction curve consists of line AB and curve 

BC which represent reverse plasticity limits and ratchet limits, respectively. Shakedown occurs when 

the applied load lies below AB and BC, otherwise, either reverse plasticity appears beyond AB or 

ratchetting happens above BC. The point C denotes the limit load for the applied mechanical load.  

Fig. 6 also presents the converged values of the lower bound shakedown limits. In this paper, a 

convergence condition is given as δλλλ ≤− k
UB

k
LB

k
UB /)( , where %1=δ , k

UBλ  and k
LBλ  denote the upper and 

lower bound shakedown limit multipliers at thk  iteration. Convergence is reached when this condition 

is satisfied for more than five consecutive iterations. Both limits are then assumed to converge to an 

exact value. The upper bound shakedown limit is therefore chosen as the shakedown limit in the rest 

of this paper. Fig. 7 shows the convergence reaches after 50 iterations for the computation of upper 

bound and lower bound reverse plasticity limits at point A (Fig. 6). It is worth noting that the upper 

bounds decrease monotonically to the converged value.  

A comparison of shakedown limits between the welded pipe and the pure PM pipe is shown in Fig. 

8a. The reverse plasticity limit of the welded pipe is reduced compared with that of the pure PM pipe, 

but the limit load is comparatively unaffected. The low cycle fatigue failure due to the local reverse 
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plasticity may occur as the different stiffnesses of WM and PM cause a stress concentration. This 

local concentration has little effect on the global failure mechanism, and hence does little to affect the 

limit load. Further discussion of these mechanisms is given in section 4.  

The reduced reverse plasticity limit shown is clearly harmful to the performance of the pipe. As an 

example of the scale of the reduction in performance, the reverse plasticity boundary was brought 

back to comparable levels of the pure PM pipe by increasing the yield stress of the WM to 460MPa, 

shown in Fig. 8b.  

In practice, the diagram in Fig. 6 may be simplified to be two lines and hence can be determined by 

three limits: (i) reverse plasticity limit; (ii) limit load and (iii) the slope of the ratchet limit line, where 

(i) defines the horizontal line AB, and (ii) and (iii) build the slope line BC.   

 

5.2 Effect of geometry parameters and material properties on the shakedown limits 

In this subsection, the individual effects of i) WM geometry, ii) ratio of inner radius to wall thickness 

and iii) material properties of WM, PM and HAZ on the shakedown limits of the weld pipe are 

investigated.  

5.2.1.  Influence of WM geometry 

In order to detect the influence of WM geometry on the shakedown limits, five parameters b , c , e , 

α  and β  [25] are separately considered to vary in values: b =2, 3, 4, 5, 6 (mm),  c =2, 2.5, 3, 3.5, 4 

(mm), e =4.5, 5.5, 6.5, 7.5, 8.5 (mm), α =43, 48, 53, 58, 63 (o) and β =8, 10, 12, 14, 16 (o). 

Fig. 9 shows the effect of varying b  dimension on the shakedown interaction diagram (keeping all 

other variables constant). A marginal increase in the reverse plasticity limit is observed with 

increasing b  value. This can be attributed to the effect of the b  dimension on the thermal stress 

distribution at the weld. The limit load is unaffected by the change in the b  dimension, since the 

change in the stress distribution is too small to have an impact on the global limit of the pipe.  

Fig. 9 also shows the effect of c , e , α  and β  on the shakedown limits, and shows that these 

dimensions also have very little effect on the shakedown loads of the pipe for similar reasons as with 

the case of parameter b.   

In practice, it is concluded that the geometry of WM has very little effect on the reverse plasticity 

limits, limit loads and slopes of the ratchet limit line of the welded pipe.   
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5.2.2.  Influence of ratio of inner radius to wall thickness 

The effects of the different ratios of the inner radius iR  to wall thickness t of the welded pipe on the 

shakedown limits are addressed in this subsection. The inner radius is varied between 40mm and 

600mm, with a fixed wall thickness of 40mm. The shakedown limit interaction diagrams are shown in 

Fig.10.  

The reverse plasticity limits are shown to rise with an increasing tRi /  ratio. The thermal stresses 

incurred in each geometry are similar, with a reduction in the thermal stress concentration seen in the 

region of the PM (where local failure occurs) with increasing tRi / . The limit load is shown to 

decrease with increasing tRi / , which is due to the increasing hoop and axial forces resulting from the 

increasing pressure loading area and the closed end condition. It is also noted that the slope of the 

ratchet limit lines increases with increasing tRi /  ratio.  

 

5.2.3.  Influence of materials properties 

In this subsection, the individual effects of the coefficient of thermal expansion ( WMα ), the Young's 

modulus  ( WME ) , the yield stress ( WM
yσ ) of the WM and the yield stress of the HAZ ( HAZ

yσ ) on the 

shakedown limits are independently investigated. 

 

5.2.3.1. Coefficient of thermal expansion of weld metal WMα  

The coefficient of thermal expansion of weld metal WMα varies from 3.0 ( 1510 −−× Co ) to 4.6 ( 1510 −−× Co ) 

in 0.2 ( 1510 −−× Co ) increments. Fig. 11 shows that when PMWM αα < , the reverse plasticity limits rise 

with increasing WMα . Fig. 11 also shows that when PMWM αα ≥ , the reverse plasticity limits fall with 

increasing WMα . This result arises because larger thermal stresses will occur where the difference in 

thermal expansion coefficients is larger, causing localised failure at lower thermal loads. The limit 

load of the structure is unaffected by the change in thermal expansion coefficient due to the purely 

mechanical nature of the load. The slopes of the ratcheting boundary vary with WMα  in a similar 

manner to the reverse plasticity boundary.   

 

5.2.3.2. Young's modulus of weld metal WME  
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The Young's modulus of the weld metal WME  varies from 40MPa to 680MPa in 80MPa increments. 

Fig. 12 shows that the variation in WME  does not affect the limit loads since the localised effect of the 

stress concentration caused does not impact on the overall load carrying capability of the structure. 

Fig. 12 also shows that when 8.1/ <PMWM EE , the reverse plasticity limits rise with increasing WME  and 

when 8.1/ ≥PMWM EE , the reverse plasticity limits fall with increasing WME . Similarly to the case of 
WMα , this is because a larger difference in stiffnesses between the WM and PM will lead to a larger 

thermal stress concentration, causing localised failure at lower thermal loads. It is also noted that the 

slopes of the ratcheting boundary decrease with increasing WME .  

 

5.2.3.3. Yield stress of weld metal WM
yσ     

The yield stress of the weld metal WM
yσ varies from 172.5MPa to 460MPa in 57.5MPa increments. Fig. 

13 shows that the variation in WM
yσ  does not affect the limit loads since globalised failures always 

occur at the PM region within the specified ranges.   

Fig. 13 also shows that when 25.1/ <PM
y

WM
y σσ , the reverse plasticity limits rise with increasing WM

yσ  

and when 25.1/ ≥PM
y

WM
y σσ , the reverse plasticity limits do not change with increasing WM

yσ . This result 

arises because (i) when 25.1/ <PM
y

WM
y σσ , the largest thermal stress causing localised failure will occur 

at WM area, and so a larger WM
yσ will allow larger thermal loads, shown in Fig. 14a and (ii) when 

25.1/ ≥PM
y

WM
y σσ , the largest thermal stress will occur at HAZ or PM area (shown in Fig. 14b, c) where 

the variation in WM
yσ  does not affect the thermal loads. It is also noted that the ratchet limit line slopes 

are not affected by WM
yσ . 

 

5.2.3.4. Yield stress of heat affected zone HAZ
yσ   

The HAZ is a thin band with a width of 2.5mm. The yield stress of HAZ HAZ
yσ varies from 184MPa to 

230MPa in 11.5MPa increments. Fig. 15 shows that the variation in HAZ
yσ  does not affect the limit 

loads since globalised failures always occur at the PM region within the specified ranges.  Fig. 15 also 

shows that the reverse plasticity limits rise with increasing HAZ
yσ  since the largest thermal stress occurs 

at HAZ area where the larger HAZ
yσ  leads to higher thermal loads. It can also be seen that the ratchet 

limit line slopes are not affected by HAZ
yσ . 
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5.3.  Influence of temperature dependent yield stress 

In this paper, the yield stress was considered not to vary significantly within the temperature range 

considered (which was less than 100 Co ). Clearly, however, variation of yield stress with temperature 

is an important factor when higher temperatures are considered or a larger variation of yield stress is 

observed. Table 3 gives temperature-dependent yield stresses of the welded pipe [1] and Fig. 16 gives 

an example of how the shakedown limit diagram is affected by this. From the figure, a reduction of 

less than 50MPa over a 200 Co  temperature range can cause sizeable reductions to the shakedown 

boundary, which emphasizes the importance of this effect in shakedown calculations.  

 

5. 4. Safety shakedown envelope   

In previous subsections, results show that i) the reverse plasticity limits of the welded pipe were 

affected by the ratio of inner radius to wall thickness dr ,  the ratio of thermal expansion coefficient  
WP

rα , the ratio of Young's modulus WPEr , the ratio of yield stress 
WP
yrσ and the ratio 

HP
yrσ ; ii) limit loads 

were affected by dr  only and iii) the slopes of the ratchet limit line were affected by dr  , 
WP

rα and 
WPEr . These effects are then combined to allow the creation of a safety shakedown envelope, which 

can be used for the design of any welded pipes within the specified ranges, shown in Fig. 17. P  is the 

applied internal pressure and θΔ is the applied temperature range. uθΔ  represents the design 

temperature range causing reverse plasticity limit, uP  denotes the design internal pressure causing 

limit load and uS  is the design slope of the ratchet limit line. Three design limits are formulated as  

)()()()()( 54321

HP
y

WP
yWPEWPd

PMu rfrfrfrfrf σσαθθ Δ=Δ                                                             (6) 

              )(1
d

PMu rgPP =                                                                                                                         (7) 

)()()( 321

WPEWPd
PMu rhrhrhSS α=                                                                                              (8) 

where 

t
R

r id =
,      

PM

WM
WP

r
α
αα =

,     PM

WM
WPE

E
Er =

,    PM
y

WM
yWP

yr
σ
σσ =

  
and    

PM
y

HAZ
yHP

yr
σ
σσ =

                               
(9)            

PMθΔ  , PMP and PMS  are constant values representing the calculated temperature range causing reverse 

plasticity limit, the limit internal pressure and the slope of the ratchet limit line for a pure PM pipe 

with 5.7=dr :  
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)(355.0 CPM
yPM

oσθ =Δ           )( 146.0 MPaP PM
yPM σ=      and       )/( 43.5 MPaCSPM

o=             (10)  

where PM
yσ is the yield stress of PM. The unit of PM

yσ in Equation (10) is MPa .            

)(1
drf ,  )(2

WP
rf α ,  )(3

WPErf ,  )(4

WP
yrf σ  and )(5

HP
yrf σ are the individual influence functions on the reverse 

plasticity limits, )(1
drg  is the influence function on the limit internal pressure and )(1

drh ,  )(2

WP
rh α , 

)(3

WPErh are the influence functions on the slope of the ratchet limit line, respectively.  

In order to calculate the shakedown limits for a specific case, the values of each influence function is 

required. For the determination of these influence functions, the obtained reverse plasticity limits, 

limit internal pressures and the slopes of the ratchet limit line in Figs. 10-13, 15 are normalised and 

replotted in graphs of function f  , g  and h  against the ratios respectively as shown in Figs. 18-20. 

Trend lines are fit to the data to give the influence functions, shown in Equations (11-19). 
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The shakedown envelope is designed for the welded pipes within the ranges of  0.15~0.1=dr ; 

21.1~79.0=
WP

r α ; 4.3~2.0=
WPEr ; 0.2~75.0=

WP
yr σ and 0.1~8.0=

HP
yr σ . For an welded pipe, the 

values of ratio of inner radius to wall thickness dr ,  the ratio of thermal expansion coefficient  WP
rα , 

the ratio of Young's modulus WPEr , the ratio of yield stress 
WP
yrσ and the ratio 

HP
yr σ

 are determined by 

the geometry and material properties using Eq. 9. These ratios lead to the calculation of the influence 

functions 51−f , 1g  and 31−h  by the use of Eqs.11-19.  Based upon the Eqs.6-8 and 10, the design 

temperature range associated with reverse plasticity limit uθΔ , the design limit internal pressure uP  

and the design slope of the ratchet limit line uS  are calculated. A safety shakedown envelope is then 

built. If the applied load point (P, Δθ) lies inside the envelop in Fig.17, the welded pipe behaves 

shakedown, otherwise non-shakedown. 

 

6. Conclusions 

This paper presents the shakedown analysis on circumferential welded pipes subjected to a constant 

internal pressure and a cyclic thermal load. Based on the results obtained in this study, the following 

conclusions are given: 

1) Comparing to a pure PM pipe, the discontinuity in material due to WM may lead to the significant 

change in the temperature range causing reverse plasticity limit, but does not significantly alter the 

internal pressure causing limit load.  

2) Geometry changes to the WM do not affect shakedown limits of welded pipes. 

3) A decrease in the ratio of the inner radius to wall thickness decreases the reverse plasticity limit but 

significantly increases the mechanical limit load of the welded pipe. 

4) Material properties of WM and HAZ significantly affect the reverse plasticity limit, but the limit 

load is unaffected by these changes in material properties.  

5)  A safety shakedown envelope is created for the design of any welded pipes within the specified 

ranges. 

6) The Linear Matching Method (LMM) is successfully applied in this study. It offers a 

monotonically decreased and converged upper bound shakedown limit.  
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Nomenclature 
b , c , e , α , β     geometry parameters of the WM 

1e       width of HAZ 

PME , WME , HAZE     Young's modulus of PM, WM and HAZ, respectively 

51−f     influence functions on the reverse plasticity limits 

1g       influence function on the limit internal pressure 

31−h     influence functions on the slope of the ratchet limit line 

k        conductivity 

P ,  0P      applied internal pressure and reference internal pressure, respectively 

uP , uθΔ , uS     design internal pressure, design temperature range, and design slope of the ratchet limit line, 

respectively 

PMP , PMθΔ , PMS     calculated internal pressure, temperature range, and slope of the ratchet limit line for a pure  

PM pipe with 5.7=dr  

PM, WM, HAZ       parent material, weld metal, and heat affected zone, respectively 

q         equivalent axial tension 

iR , D , L    inner radius, diameter, and length of the pipe  

dr  , 
HP
yrσ
  ratio of inner radius to wall thickness, and ratio of yield stress between HAZ and PM, respectively 

WP
rα , 

WPEr , 
WP
yrσ     ratio of thermal expansion coefficient, ratio of Young's modulus, and ratio of yield stress 

between WM and PM, respectively 
t          wall thickness of the pipe 

PMα , WMα , HAZα    coefficient of thermal expansion of PM, WM and HAZ, respectively  

δ        tolerance 

ε , ε& , ε&        strain, strain rate, and effective strain rate, respectively 

θ , θΔ , 0θΔ      temperature, temperature range, and reference temperature range 

λ , UBλ , LBλ , sλ       load multiplier, upper bound shakedown limit, lower bound shakedown limit and exact  

shakedown limit, respectively     

μ        shear modulus 

ν         Poisson’s ratio 

ρ        constant residual stress 

yσ , PM
yσ , WM

yσ , HAZ
yσ  yield stress, yield stress of PM, yield stress of WM, and yield stress of HAZ, respectively 

σ , σ̂     cyclic stress and linear elastic stress, respectively 
θσ̂ , Pσ̂    elastic stress corresponding to θ and P      
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Table 1 Shape parameters of a welded pipe [1, 24]  

L (mm) iR (mm) t (mm)  1e (mm) e (mm) b (mm) c (mm) α (o) β ( o) 

1000 300 40 2.5 4.5 3 2 63 10 
 

 

Table 2 Material properties at room temperature [1] 

PM
yσ  

(MPa) 

WM
yσ  

(MPa) 

PME  
(GPa) 

WME  
(GPa) 

PMα  
( 1510 −−× Co ) 

WMα  
( 1510 −−× Co ) 

k  
( 11 −− CWm o ) ν  

230 460 200 280 3.8 3.6 15 0.3 
 

 

 

Table 3. Temperature-dependent yield stress 
yσ of PM and WM, where HAZ shares the same 

yσ with 

PM [24]. 

Temperature θ ( Co ) 20≤  200 400 600 800 1000 1200≥  
Yield stress HAZ

y
PM
y σσ =   (MPa) 230 184 132 105 77 50 10 

Yield stress WM
yσ  (MPa) 460 367 264 209 154 50 10 
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Fig.1 A welded pipe configuration 

 

 

 

Fig. 2 Mechanical and thermal loads and boundary conditions of the welded pipe 
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Fig. 3 The operating temperature history of the fluid contained within the welded pipe  

 

 

 

 

 

 

 

Fig. 4 Finite element mesh of the welded pipe 
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Fig. 5  The contours of von Mises effective elastic stress for a welded pipe and their zooms with (a) an 
internal pressure MPaP 230 = , (b) a linear temperature gradient ( Co500 =Δ=Δ θθ ) and (c) the highest 

uniform temperature of Co50  

 

 

 

 

Fig. 6 Upper and lower bound shakedown limit interaction curves of a welded pipe subjected to a 
varying thermal load and a constant internal pressure 
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Fig. 7 The convergence condition of iterative processes for reverse plasticity limit (point A in Fig. 6, 
subjected to varying thermal loads only) 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Shakedown limit interaction curves of (a) the welded pipe with MPaWM
y 230=σ and the pure PM 

pipe and (b) the welded pipe with MPaWM
y 460=σ and the pure PM pipe. In both cases, Young's 

modulus GPaEE HAZPM 200== and GPaEWM 280= are adopted (Table 2) 
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Fig. 9 Shakedown limit interaction curves of the welded pipe with the different values of b (mm), c  
(mm), e  (mm), α (o) and β (o), where the wall thickness 40=t  mm 

 

 

Fig. 10 Shakedown limit interaction curves of the welded pipe with the different ratios of the inner 
radius to wall thickness tRi /  
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Fig. 11 Shakedown limit interaction curves of the welded pipe with the different coefficients of 
thermal expansion of the weld metal WMα , where 8.3== HAZPM αα ( 1510 −−× Co ) 

 

 

 

Fig. 12 Shakedown limit interaction curves of the welded pipe with the different Young's modulus of 
the weld metal WME , where MPaEE HAZPM 200==  
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Fig. 13 Shakedown limit interaction curves of the welded pipe with the different yield stresses of the 
weld metal  WM

yσ , where MPaHAZ
y

PM
y 230== σσ  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 Local reverse plasticity failure mechanism of the welded pipe with the yield stress of WM (a) 
75.0/ =PM

y
WM
y σσ , (b) 25.1/ =PM

y
WM
y σσ  and (C) 2/ =PM

y
WM
y σσ  
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Fig. 15 Shakedown limit interaction curves of the welded pipe with the different yield stress HAZ
yσ , 

where MPaPM
y

WM
y 4602 == σσ  

 

 

 

 

 

Fig. 16 Shakedown limit interaction curves of the welded pipe with the temperature-dependent yield 
stress 

yσ  
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Fig. 17 A shakedown region for the design of welded pipes 
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Fig. 18  Influence functions on the reverse plasticity limit with the different ratios (a) tRr i
d /= , (b) 

PMWMWP
r ααα /=  and (c) PMWMWPE EEr /=  

 

0 

0.2 

0.4 

0.6 

0.8 

1 

0.2  0.6  1  1.4  1.8  2.2  2.6  3  3.4 

reverse plasticity limit
trend

WPEr
 

)(3

WPErf
 

)(c

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤<+

≤<+

≤≤++

=

3.4 2.6                             1.58 0.23-

2.61.4                          1.01 0.0071-

1.40.2     0.43  0.86) (33.0-

)(

2

3

WPEWPE

WPEWPE

WPEWPEWPE

WPE

rr

rr

rrr

rf

0 

0.2 

0.4 

0.6 

0.8 

1 

0.75  0.85 0.95 1.05 1.15 1.25

reverse plasticity limit

trend

WP
rα

 

)(2

WP
rf α

 

)(b

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤<+

≤<

≤≤+

=

        1.21  1.11     1.78 0.71-

1.110.95      0.99+ 0.0099

0.95  0.79     710.0 98.0

)(2

WPWP

WPWP

WPWP

WP

rr

rr

rr

rf
αα

αα

αα

α

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

1  3  5  7  9  11  13  15 

reverse plasticity limit

trend

)(1
drf  

dr  

)(a

0.064
1 )( 0.87)( dd rrf =



  26

 

 

 

Fig. 19  Influence functions on the reverse plasticity limit with the different ratios (a) PM
y

WM
y

WP
yr σσσ /=  

and (b) PM
y

HAZ
y

HP
yr σσσ /= , and (c) influence function on the limit load with the different ratios 

tRr i
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Fig. 20  Influence functions on the slope of the ratchet limit line with the different ratios (a) 

tRr i
d /= , (b) PMWMWP

r ααα /=  and (c) PMWMWPE EEr /=  
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