
Proc. SymCon '03

Symmetries in Planning Problems

Derek Long and Maria Fox

University of Durham, Durham, UK

Abstract. Symmetries arise in planning in a variety of ways. This paper de­

scribes the ways that symmetry arises most naturally in planning problems and

reviews the approaches that have been applied to exploitation of symmetry in or­

der to reduce search for plans. It then introduces some extensions to the use of

symmetry in planning before moving on to consider how the exploitation of sym­

metry in planning might be generalised to offer new approaches to exploitation

of symmetry in other combinatorial search problems.

1 Introduction

Symmetry is a phenomenon that arises in a wide range of combinatorial problems, such

as CSPs [1-4], model-checking [5] and other areas [6]. It is also common in plan­

ning problems. Where combinatorial problems that are tackled by systematic search

techniques (including heuristic search techniques) symmetry is a source of inefficiency

because the search can examine different choices that are symmetrically equivalent.

This inefficiency can be exponentially expensive, since it is common for symmetries

to give rise to factorial-function factors in the size of search spaces, resulting from the

permutations of symmetric choices that can be searched independently of one another.

Several authors have explored the possibilities for eliminating symmetries from plan­

ning problems [3,7-9]. In this paper we reexamine the sources of symmetry in planning

problems and consider the extent to which existing techniques have addressed them. We

also consider an extension of the notion of symmetry that seems particularly relevant to

planning problems. We conclude by examining how symmetries in planning problems

and the existing research on addressing them might be abstracted to the wider context

of general search solutions to combinatorial problems.

2 Planning Problems

In this section we briefly review a characterisation of planning problems to set the con­

text for the discussion of symmetry that follows. A planning problem is considered to

include a collection of action descriptions, each parameterised by some finite number of

variables. Each action has a precondition formula and characterises the effect it has on

the world in which it is applied. For simplicity we here consider preconditions to be sim­

ple conjunctions of atomic propositions (formed from predicates applied to terms which

may be either variables of the action or constants) and the effects to be a set of atomic

propositions representing the add effects of the action and a set of atomic propositions

representing the delete effects of the action. More complex actions, including actions

142



Proc. SymCon '03

with numeric pre- and postconditions, temporal structure and conditional effects have

been explored [10], but these additional complications will not be considered in this

paper.

In addition to the action descriptions a planning problem contains a characterisation

of an initial state (as a collection of atomic propositions that hold at the outset) and

a formula describing a goal. We will assume that this is also a conjunction of atomic

propositions for the purposes of this paper. The problem description will include a col­

lection of constants which instantiate the arguments of the predicates that are used in

the construction of the propositions of the initial and goal states. These constants will

be called objects. Notice that in describing a problem with a large number of objects in

which each object either starts with distinct properties, or might acquire distinct prop­

erties during execution of a plan, the objects must all be given distinct identifiers.

Although temporal plans can have complex concurrent structure, plans for planning

problems of the form we have described take two alternative shapes: plans may be

sequences of instantiated actions or else they may be generalised to allow sequences

of sets of instantiated actions, where the sets contain actions that are considered to

be executed concurrently. Actions that might interfere with one another may not be

executed concurrently. We return to examine this idea further later in this paper.

3 Sources of Symmetry in Planning Problems

A symmetry is a function that maps the structure of a problem into itself. That is, a

symmetry is an automorphism of the problem definition.

One of the primary sources of symmetry in planning problems is the naming of

distinct objects that are all functionally equivalent. For example, if a problem involves

transporting cargoes from one location to various destinations, the distinct cargoes will

be named and distinguished, although any cargoes that start at the same place and must

end at the same place, with no distinguishing features other than their names, are sym­

metrically equivalent. This symmetry has also been called functional equivalence [7],

because it is a relationship between objects that can substitute one for another in their

functional roles within a plan. This form of symmetry leads to simple symmetry groups,

consisting of complete permutation groups on the objects that exhibit the symmetric

qualities.

A second source of symmetry is a generalisation of the first: configurations of ob­

jects can be symmetric with one another. For example, in Figure I the blocks A and

B are not symmetric with one another because a simple exchange of these two blocks

leaves the initial state containing the propositions {on(A, D), on(B, C)} in place of

{on(A, C), on(B, D)}. However, a mapping that exchanges A with Band C with D

is a symmetry, since it acts as an identity mapping when applied to the initial state.

Symmetries of this kind can lead to more complex symmetry groups. Research on these

symmetries in planning is reported in [3].

A third source of symmetry takes a different form altogether. In many problems

there are collections of plans that are equivalent up to ordering of some subsequences

of their actions. For example, in Figure 2, the plan A; B; C is equivalent to the plan

B; A; C. The automorphism that makes this symmetry is the mapping which swaps the

143



Pmc. SymCon'03

IAl IBl
ｾ

Fig. 1. A simple initial state configuration for four blocks.

names and bodies of actions A and B. This form of symmetry is closely related to the

Inilial Slale

B

Pre:

Add: q

A

Pre:

Add: p

B

Pre:

Add: q

ｙ ｜ ｾ ｉ I
5 ｉ ｰ ｲ ｾ Ｚ Ｎ ｰ Ｌ , I U

Add: r

Del: p,q

Fig. 2. Symmetry between plans.

symmetries in transition systems explored by Emerson and Sistla [II]. It is also closely

associated with the notion of concurrency in plans mentioned in Section 2. Any set of

action instances that are applied concurrently within a plan can obviously be permuted

without changing their collective behaviour. Non-interference between actions is most

apparent when the actions involved refer to propositions that form entirely disjoint sets.

In principle, a planning problem that can be decomposed into disjoint sub-problems will

induce a symmetry in which the disjoint components are freely permuted. However,

not all such decompositions form the basis for symmetries since the disjoint compo­

nents may not be structured in a way that allows a mapping between them that induces

mappings between plans. Emerson and Sistla considered automorphisms on transition

structures in which the symmetries are described by permutations on states and transi­

tions (relations on pairs of states). The permutation of disjoint sub-problems is not of

this form, since it is not always the case that the mapping can be extended to permute

individual transitions.

Symmetry between different orderings of actions is tantalising, since there are many

problems in which inefficiency is introduced by considering actions in different orders

when the order does not actually matter. Unfortunately, it is often the case that actions

can be permuted without impact on the plan, but the actions do not commute. This

happens when the effects of the actions that change according to the order of execution

are irrelevant to execution of the plan or to achievement of the goals. For example, if

the domain illustrated in Figure 2 were to also contain an action, D, with precondition

J! then the transposition of A and B is no longer a symmetry, since the plan A; D would

be mapped to the invalid structure B; D.

Rintanen [9] explores symmetries in this class. However, since planning problems

are extremely compact encodings of transition systems he is unable to consider all of

144



Proc. SymCon '03

the possible symmetries of this form: the symmetries he actually exploits fall into the

same class as those explored by Fox and Long [7].

4 Exploitation of Symmetry in Planning

Several researchers have exploited symmetries to reduce the work involved in finding

plans [7,8,3,9,12]. All of this work respects one of the important themes in planning

research: the objective of building a domain-independent solution to the problem of

constructing plans. Planning, perhaps uniquely in the development of AI research, has

maintained a focus on the objective of finding planning algorithms that do not rely on a

user encoding guidance, either explicit or implicit, in the description of a problem. This

may be contrasted with the esp community, where much research has explored how

best to encode domains to harness general esp technologies effectively.

As a consequence of this theme in planning research it is not reasonable to expect

that symmetries be supplied explicitly by a domain engineer in a planning problem.

Therefore, one avenue of research that is particularly relevant to the exploitation of

symmetry in planning has been the automatic identification of symmetries. However,

finding symmetries is a hard problem and automatic techniques are unlikely to compete

with human domain engineers in finding all relevant symmetries. Further, symmetries

that have been found automatically will not necessarily be very important in reducing

search. Human problem-solvers can be extremely effective at identifying symmetries

that will actually lead to efficiency gains and ignoring smaller, less powerful symme­

tries, but fully-automated methods are less likely to be able to distinguish between them.

Two main techniques have been explored for finding symmetries, one focussing on

finding object symmetries and the other on finding symmetries between object con­

figurations (including single objects as a special case). The latter approach has been

explored by Joslin and Roy [3], using NAUTY [13], the graph automorphism discov­

ery tool, to identify automorphisms in the graph representing the object relationships

present in the initial state and goal formula. The former approach is exemplified by the

work of Fox and Long [7] where symmetries between functionally equivalent objects

are discovered by a simpler analysis of the initial and goal states, based on a starting

point of collections of objects of the same type (using the automatically inferred types

generated by TIM [14]). This approach is very efficient and imposes an extremely low

overhead on the planner, whether there is or is not symmetry in a problem. The use

of NAUTY is more expensive, since the construction and analysis of the graph is much

more costly than direct examination of the initial state and goal condition, but, of course,

it can yield more symmetries than the TIM analysis.

Having found symmetries, researchers have each approached exploitation in slightly

different, but closely related, ways. Joslin and Roy use a eSP-based approach, man­

aging symmetry-breaking in the way that has become standard [I], by posing new

constraints during search. Fox and Long modify the search algorithm of a Graphplan­

based [IS] planner in order to prune symmetric choices from the search space. Rintanen

uses a SAT-solver, adding symmetry-breaking constraints to the SAT-encoding stati­

cally, in order to prune search. A static constraint approach suffers from the important

drawback of requiring a potentially very large set of additional constraints, possibly

145



Proc. SymCon '03

including many that never become relevant to solving the problem, to be added to the

problem description. The approach taken by Fox and Long has a low overhead during

execution and is invoked only when symmetries are actually explored during the search.

On the other hand, it is currently tightly integrated with the specific search engine of

Graphplan.

One further development, explored by Fox and Long in [8], is the idea of dynamic

symmetries. Dynamic symmetries are symmetries that arise in planning problems dur­

ing the construction of a solution. To understand this better, it is helpful to consider the

way that search and symmetry interact in planning. Consider a problem that involves

supplying a group of people with cups of coffee with an initial state that includes a cup­

board full of empty cups. The cups begin symmetric, so the choice of order in which to

take cups from the cupboard and fill them with coffee is irrelevant. However, as soon as

the first cup is taken from the cupboard and filled with coffee then it becomes asymmet­

ric with the other cups. The filled cup is different from all the others because it contains

coffee. The outcome of a search along a branch that considers an action involving the

filled cup does not imply anything about a branch in which an empty cup is considered

as an alternative. If the planner backtracks over the decision to fill the first cup then its

symmetry with the other cups is restored. Thus, symmetry can be exploited to elimi­

nate consideration of other empty cups as alternatives to the first cup in executing the

action to fill the cup. If a second cup is filled, that too becomes asymmetric with the

other empty cups. However, the two filled cups can now be seen to be interchangeable

(assuming that we are ignoring temporal effects that might leave the first cup cooler

than the second). As we fill more and more cups, we lose more and more of the original

symmetries of the problem, but we gain symmetries in the growing collection of filled

cups. Failure to exploit this dynamic symmetry in planning leads to a very serious dete­

rioration in performance, since it is very common for a plan to involve making several

steps with each of the symmetric objects within a plan. Without dynamic symmetries,

the first choices for roles of the symmetric objects will eliminate all opportunities for

further exploitation of symmetry and the same explosive combinatorial search will face

the planner as would have faced it at the outset without the exploitation of the initial

symmetries. To see the impact that is possible consider Figure 3, which shows two ver­

sions of the symmetry-breaking STAN planner working on Gripper problems. These

require a robot with two symmetric grippers to carry a collection of symmetric objects

from one room into an adjacent room. STAN v3 is only capable of exploiting initial

symmetries, while SymmetricSTAN can exploit the dynamic symmetries in the prob­

lem.

5 Extending Symmetries in Planning Domains

Although symmetry can arise very naturally in a planning domain as a consequence of

there being a large number of functionally equivalent objects or object configurations,

symmetries between objects are usually a consequence of abstractions in the description

of planning domains. For example, the symmetry between the blocks in Figure 1 is a

consequence of the abstraction that ignores precise positions of blocks on the table. If

the positions were included then a symmetry that included the configuration of the pairs

146



Pmc. SymCon'03

1e+06 ｣ Ｍ Ｍ ｾ Ｍ ｾ Ｍ ｾ Ｍ ｾ Ｍ ｾ Ｍ ｾ ｾ Ｍ Ｍ ］ Ｍ ｾ Ｍ Ｍ ］ ｾ ｾ
SymmetricSTAN --+-­

STANv3 --->{---

100000

10000

1000

100

10

10 12 14 16 18 20

Problem Number

Fig.3. Log-scaled plot showing the performance of two versions of STAN in solving Gripper

problems.

of blocks together with their corresponding table positions would still depend on the

abstraction of the relative properties of the table positions, such as the distances to the

edges of the table. In fact, symmetries in planning domains almost always follow from

abstractions made by the domain engineer that describe objects in terms of just those

features that the domain engineer knows to be relevant to the problem. By leaving out

the irrelevant details, the domain engineer offers the planner the opportunity to exploit

symmetries.

As planning domains become more complex the domain engineer's job will become

harder. Appropriate abstractions will not always be obvious: to be certain of which

properties are relevant or irrelevant to the solution of a given planning problem can

require, in the worst case, that the problem be solved in advance. In order to support

reusable domain encodings, it is also important that encodings should not be engineered

only for the solution of one specific problem. This might mean that a domain should

include details about the properties of objects that could have a bearing on one problem

but that are irrelevant in the solution of another. For example, if the blocks in Figure I

are only intended to be stacked in different orders then their relative positions are all that

matter, but if they are also to be used in solving a problem of supporting heavy weights

then their relative rigidity will be relevant, and if they are to be used in block-paving

then their colour and material will become relevant.

Nebel, Dimopolous and Koehler [16] have shown that it is possible to apply filtering

techniques (RIFO) to isolate the relevant features of a planning problem using a static

analysis on the domain prior to planning. Using this technique prior to the identification

of symmetries will reduce the possibility that symmetries are lost because of properties

included in the domain that are not required in the solution of the specific problem.

The approach is straightforward: we apply the filtering technique to strip out irrelevant

initial state information and then apply the symmetry identification to the reduced initial

state and goal state, using TIM to derive types for the reduced domain. Note that it

is important to apply TIM after the domain is filtered because the type structure can

147



Proc. SymCon '03

relax as a result of the filtering (TIM will differentiate types of objects based on their

properties, so if properties are removed then type distinctions can be lost).

Some forms of irrelevance are more subtle than those detected by the RIFO tech­

niques. These include features that are irrelevant because they cannot make a difference

to the efficient solution of a problem. This is closely linked to a property we call almost

symmetry: in many planning problems, objects begin in slightly different configura­

tions, or are required to reach slightly different configurations, but the majority of their

behaviour is essentially equivalent to the behaviour of other objects of the same type.

For example, consider the problem of transporting a collection of cargoes from one lo­

cation to another. Suppose that the cargoes must all end up at the same place and they

all start at the same place, but that they begin stacked in several separate piles. Then,

the plan will involve unstacking the cargoes, loading them into the transport, delivering

and unloading them. Notice that the majority of the task is the same for every cargo: the

loading, delivering and unloading will have to executed for every cargo. Unfortunately,

the fact that the cargoes all begin stacked in different piles will mean that there is no

symmetry at all of the single-object kind, and probably very little of the object configu­

ration kind, despite the fact that the human observer can see that there is a high degree

of symmetry in the body of the problem.

A similar situation might occur in the example of the coffee cups considered ear­

lier if the cups begin with some in a dishwasher, others in a cupboard, some in a sink

requiring washing and others on a draining board requiring drying. We refer to config­

urations like this as almost symmetric: the objects can be made symmetric by applying

an appropriate abstraction to the domain. The abstraction is not neutral, as in the case

of stripping irrelevant facts, because the plan is affected by the properties we want to

abstract. However, if we solve the abstracted problem then we can add a plan fragment

to the beginning of the solution in order to account for the difference between the real

initial state and the abstracted initial state. In doing this, it is important to observe that

the greater the abstraction the more difficult it will be to find the appropriate plan prefix,

and also that the plan constructed by prepending a fragment to account for the abstrac­

tion can lead to an overall solution that is less efficient that one that is constructed

directly from the original problem. For example, an abstraction of the cargoes would be

to suppose that their initial positions are irrelevant and treat them as though they could

all be immediately loaded. The plan prefix will then have to arrange for the cargoes

to be available at the right point in the sequence of loading by clearing the higher car­

goes. A simple plan prefix is to simply unstack all the cargoes at the outset, so that they

can be freely loaded when necessary, but this could involve steps that are unnecessary,

since loading in an appropriate order will ensure that each cargo is clear in the original

configuration, without having to add extra steps to unstack them all. A more complex

situation arises if the cargoes can only be unstacked onto a limited set of pallets, since

there might not be a plan prefix that can achieve the abstracted situation in which all the

cargoes are simultaneously unstacked.

In general, almost symmetries can be seen as symmetries constructed by adding to

or removing from the properties in the initial state and goal formula. It is possible to

identify the objects for which symmetry is almost present by examining the type struc­

ture, but it is harder to determine what editing of the initial state and goal formula is

148



Proc. SymCon '03

a safe abstraction to introduce symmetry. Notice that modification of the goal formula

by addition of properties will make the problem harder (possible unsolvable) while re­

moval of properties will require that a plan post-fix be added to manage the achievement

of the abstracted goals. Similarly, removal of initial state facts will make the problem

harder, while addition of new facts can create an unreachable state (such as the state in

which all the cargoes are clear in the preceding example).

Exploration of an appropriate handling of this abstraction mechanism is ongoing

research. We have identified the relevant concept of n-symmetry, which hold between

two objects if they can be made symmetric by the application of n actions. We believe

that for small values of n this concept leads to constrained edits of the initial state and

goal formula which compromise between the opportunities to exploit symmetry and the

cost of accounting for the abstraction in the final plan.

6 From Symmetries in Planning to CSPs

Planning and CSP are closely related. Several researchers have explored the use of CSP

technology for planning [17,18], including the exploitation of symmetry within that

framework [3]. The usual approach is to see goal propositions as variables to which

must be assigned a value corresponding to the achieving action. This model requires

that the same goal proposition occurring at different times in the structure of the plan

be differentiated, so it is actually a time-stamped goal proposition that is treated as a

variable and, similarly, a time-stamped action that represents a possible value to assign

to the variable. Within this framework it is possible to consider how the symmetries that

have been described in planning domains transfer into the CSP models.

The object symmetries, both individual and configuration symmetries, induce sym­

metries that permute propositions and action instances (those that refer to the symmetric

objects). Thus, these symmetries correspond to permutations of variables and of values

in the same way as has been considered in work on symmetries in CSPs, such as [I,

2, 19]. The treatment of these symmetries within planning can then be seen as a spe­

cialisation of the approaches used in the parallel work in CSPs. The specialisations are

possible because of the way that the symmetry groups are tied to the roles of objects, so

that efficient symmetry-tracking can be managed by concentrating on the roles of the

objects themselves, rather than on the larger sets of propositions and actions in which

they appear.

Two novelties are apparent in the work on symmetries in planning. Firstly, the au­

tomatic recognition of symmetries is still at an early stage: work by Aloul et at [20]

examines the idea in the context of SAT, and there is also some preliminary work ex­

ploring this idea in a slightly broader collection of CSP problems. The restriction of

automatic detection to relatively constrained languages seems important: the more con­

strained forms of planning problems compared with general CSPs is probably more

susceptible to automatic analysis to find symmetries. Nevertheless, finding graph auto­

morphisms within the graphical representation of CSPs could be exploited to automate

the discovery of symmetries within CSPs that would alleviate the need to explicitly

code them. Secondly, the identification of dynamic symmetries is not commonly part

of the exploitation of symmetries in CSPs. To use dynamic symmetries of the kind de-

149



Proc. SymCon '03

scribed above in CSPs using the well-established framework described in [1,2] it would

be necessary to have either an automatic symmetry discovery system that could be run

online, which is unlikely to be practical, or else it would be necessary to construct the

groups of anticipated symmetries in order to exploit them when they became active dur­

ing the search. The difficulties in implementing such an approach are that it would no

longer be possible to simply monitor symmetries incrementally to determine the point

at which they broke, since symmetries might reappear or appear for the first time as

the search progresses. This would mean that symmetries would have to be constantly

retested against the current partial assignment in order to check whether they were valid

symmetries. This cost can be managed within the restricted context in which it has been

applied in planning because the ways in which symmetries (or, more properly, a subset

of symmetries) can dynamically arise are highly constrained and can be managed by

monitoring the states of relatively small sets of objects rather than the much larger sets

of actions and propositions in which they appear. Even then, only single-object sym­

metries have been handled - configurations are far more problematic because of the

complexity of monitoring the changing status of candidate configurations. The general

problem of finding all symmetries in a problem, planning or not, is a hard one and it is

important to maintain a constant watch on the trade-off between possible gains in search

efficiency, through pruned symmetric branches, and the costs of finding and exploiting

the symmetries.

Beyond the transfer of existing planning symmetries technology, it is also possible

to consider the relevance of the extensions discussed in Section 5. The idea of filtering

for relevance is of potential interest in CSPs. An example might be a description of the

n-queens problem, complete with the colours of the squares. If the problem is to find

a solution to the problem in which there are no queens on white squares in the middle

n/2 columns of the board then the colours are relevant and they also destroy a symmetry

(90 0 rotation is no longer a symmetry), while they are irrelevant to the original problem.

The idea of exploiting almost symmetry is also interesting: if a constraint is added to

the n-queens problem stipulating that the queen in the first column must not be in the

first row, then the symmetries of the problem are all broken (the constraint does not

have any symmetries). However, it is quite obvious that relaxing this constraint, solving

the symmetric problem exploiting symmetries and then reinstating the constraint to

filter the solutions would be much more efficient than trying to solve the problem in its

asymmetric form.

7 Conclusions

In this paper we have reviewed the ways in which symmetry arises in planning problems

and the ways that it has been exploited. Some new proposals for exploitation of sym­

metry have also been outlined. We have also commented on the generalisation to CSPs

of techniques used for symmetry recognition and exploitation in planning problems.

The most important theme of this paper, as far as the continued development of ex­

ploitation of symmetry in planning is concerned, is the notion of "almost symmetry".

The observation that symmetry is generated by abstractions in problem descriptions

leads directly to the proposal that symmetries can be discovered by applying appropri-

150



Proc. SymCon '03

ate abstractions to problem descriptions. The discovery of symmetries can offer bene­

fits by allowing an abstracted problem to be solved efficiently and, then, an appropriate

transformation applied to its solution to arrive at a solution to the original problem. We

have seen that this technique could be applied in other search problems as well as in

planning. In order to harness the idea it will be necessary to constrain the abstractions

that are considered, both to avoid generating a new hard search problem that precedes

any attempt to solve the original problem and also to avoid allowing the distance be­

tween the solution to the abstraction and a solution to the original problem to become

unbridgeable. We believe that, in the context of planning problems, restricting the range

of abstractions to simple graph edits on the representation of the initial state and goals,

further constrained by the applicability of small chains of actions to individual objects

or object configurations, will give rise to a manageable but useful set of abstractions.

Our immediate research goal is to pursue this idea in detail and we intend to report our

results within the symmetry community shortly.

References

1. Gent, l.P., Smith, B.: Symmetry breaking during search in constraint programming. In:

Proceedings of ECAL (2000)

2. Backofen, R., Will, S.: Excluding symmetries in constraint-based search. In: Proceedings of

CP-99. Volume 1713 of LNCS., Springer-Verlag (1999)

3. Joslin, D., Roy, A.: Exploiting symmetry in lifted CSPs. In: Proceedings of 14th National

Conference on AI (AAAI-97). (1997)

4. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry breaking predicates for search

problems. In: Proceedings of the Fifth International Conference on Knowledge Representa­

tion and Reasoning (KR '96). (1996) 148-159

5. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in System Design

9 (1996)

6. Audemard, G., Benhamou, B.: Reasoning by symmetry and function ordering in finite model

generation. In Voronkov, A., ed.: Proceedings of the 18th International Conference on Auto­

mated Deduction (CADE-18). Volume 2392 of LNCS., Springer Verlag (2002) 226-240

7. Fox, M., Long, D.: The detection and exploitation of symmetry in planning problems. In:

Proceedings of 16th nCAl. (1999)

8. Fox, M., Long, D.: Extending the exploitation of symmetries in planning. In: Proceedings

of AIPS'02. (2002)

9. Rintanen, J.: Symmetry reduction for SAT representations of transition systems. In: Pro­

ceedings of the 13th International Conference on Planning and Scheduling. (2003)

10. Fox, M., Long, D.: An extension to PDDL for expressing temporal planning domains. Journal

of AI Research 20 (2003)

11. Emerson, E., Sistia, A.: Symmetry and model-checking. Formal methods in system design

9 (112) (1996)

12. Miguel, I.: Symmetry-breaking in planning: Schematic constraints. In: Proceedings of the

CP'OI Workshop on Symmetry in Constraints. (2001) 17-24

13. McKay, B.: Nauty user's guide 1.5. Technical Report TR-CS-90-02, Austrialian National

University, Canberra (1990)

14. Fox, M., Long, D.: The automatic inference of state invariants in TIM. JAIR 9 (1998)

IS. Blum, A., Furst, M.: Fast Planning through Plan-graph Analysis. In: Proceedings of 14th

nCAl. (1995)

151



Proc. SymCon '03

16. Nebel, B., Dimmopoulos, Y., Koehler, J.: Ignoring irrelevant facts and operators in plan

generation. In: Proc. of 4th European Conference on Planning, Toulouse. (1997)

17. van Beek, P., Chen, X.: CPlan: A constraint programming approach to planning. In: Proc. of

16th National Conference on Artificial Intelligence, AAAIIMIT Press (1999) 585-590

18. Do, M.B., Kambhampati, S.: Solving planning graph by compiling it into a CSP. In: Proc.

of 5th Conference on AI Planning Systems, AAAI Press (2000) 82-91

19. Roy, P., Pachet, E: Using symmetry of global constraints to speed up the resolution ofCSPs.

In: Workshop on Non-binary Constraints, ECAI. (1998)

20. Aloul, E, Ramani, A., Markov, I., Sakallah, K.: Solving difficult SAT instances in the pres­

ence of symmetry. Transactions on Computer-aided Design September issue (2003)

152




