
Plan Permutation Symmetries as a Source of Planner Inefficiency

Derek Long and Maria Fox
Department of Computer and Information Sciences

University of Strathclyde, Glasgow, UK

Abstract

This paper briefly reviews sources of symmetry in planning
and highlights one source that has not previously been tack-
led: plan permutation symmetry. Symmetries can be a sig-
nificant problem for efficiency of planning systems, as has
been previously observed in the treatment of other forms of
symmetry in planning problems. We examine how plan per-
mutation symmetries can be eliminated and present evidence
to support the claim that these symmetries are an important
problem for planning systems.

Introduction
Symmetry is a phenomenon that arises in a wide range
of combinatorial problems, such as CSPs (Gent & Smith
2000; Backofen & Will 1999; Joslin & Roy 1997; Craw-
ford et al. 1996), model-checking (Ip & Dill 1996) and
other areas (Audemard & Benhamou 2002). It is also com-
mon in planning problems. Where combinatorial problems
that are tackled by systematic search techniques (including
heuristic search techniques) symmetry is a source of inef-
ficiency because the search can examine different choices
that are symmetrically equivalent. This inefficiency can
be exponentially expensive, since it is common for sym-
metries to give rise to factorial-function factors in the size
of search spaces, resulting from the permutations of sym-
metric choices that can be searched independently of one
another. Several authors have explored the possibilities
for eliminating symmetries from planning problems (Joslin
& Roy 1997; Fox & Long 1999; 2002; Rintanen 2003;
Long & Fox 2003). In this paper we examine the sources of
symmetry in planning problems and highlight one that has
not been previously addressed:plan permutation symme-
try. We explore the elimination of this form of symmetry
and demonstrate that it can lead to improvements in perfor-
mance.

Sources of Symmetry in Planning Problems
A symmetry is a function that maps the structure of a prob-
lem into itself. That is, a symmetry is an automorphism of
the problem definition.

A

C

B

D

Figure 1: A simple initial state configuration for four
blocks.

One of the primary sources of symmetry in planning
problems is the naming of distinct objects that are all func-
tionally equivalent. For example, if a problem involves
transporting cargoes from one location to various destina-
tions, the distinct cargoes will be named and distinguished,
although any cargoes that start at the same place and must
end at the same place, with no distinguishing features other
than their names, are symmetrically equivalent. This sym-
metry has also been calledfunctional equivalence(Fox &
Long 1999), because it is a relationship between objects
that can substitute one for another in their functional roles
within a plan. This form of symmetry leads to simple sym-
metry groups, consisting of complete permutation groups
on the objects that exhibit the symmetric qualities.

A second source of symmetry is a generalisation of the
first: configurations of objects can be symmetric with one
another. For example, in Figure 1 the blocksA andB
are not symmetric with one another because a simple ex-
change of these two blocks leaves the initial state con-
taining the propositions{on(A,D), on(B,C)} in place
of {on(A,C), on(B,D)}. However, a mapping that ex-
changesA with B andC with D is a symmetry, since it
acts as an identity mapping when applied to the initial state.
Symmetries of this kind can lead to more complex symme-
try groups. Research on these symmetries in planning is
reported in (Joslin & Roy 1997).

A third source of symmetry takes a different form al-
together. In many problems there are collections of plans
that are equivalent up to ordering of some subsequences of
their actions. For example, in Figure 2, the planA;B;C
is equivalent to the planB;A;C. The automorphism that
makes this symmetry is the mapping which swaps the
names and bodies of actionsA andB. This form of sym-

Initial state

p

q

p,q r

B
Pre:
Add: q

A
Pre:
Add: p

B
Pre:
Add: q

A
Pre:
Add: p

C
Pre: p,q
Add: r
Del: p,q

Figure 2: Symmetry between plans.

metry is related to the symmetries in transition systems ex-
plored by Emerson and Sistla (Emerson & Sistla 1996). It
is also closely associated with the possibility for concur-
rency in plans, such as is considered in the Graphplan sys-
tem (Blum & Furst 1995) or in partial-order planners (Bar-
ret et al. 1996). Any set of action instances that are ap-
plied concurrently within a plan can obviously be permuted
without changing their collective behaviour, since the ac-
tions in a single time point are not considered to be or-
dered in any particular way (although some researchers
have chosen to adopt the converse view that actionscanbe
sequenced at a single time point (Bacchus & Kabanza 1998;
McDermott 2003). Non-interference between actions is
most apparent when the actions involved refer to proposi-
tions that form entirely disjoint sets. In principle, a planning
problem that can be decomposed into disjoint sub-problems
will induce a symmetry in which the disjoint components
are freely permuted. However, not all such decompositions
form the basis for symmetries since the disjoint compo-
nents may not be structured in a way that allows a map-
ping between them that induces mappings between plans.
Emerson and Sistla considered automorphisms on transi-
tion structures in which the symmetries are described by
permutations on states and transitions (relations on pairs of
states). The permutation of disjoint sub-problems is not of
this form, since it is not always the case that the mapping
can be extended to permute individual transitions.

Symmetry between different orderings of actions is tan-
talising, since there are many problems in which ineffi-
ciency is introduced by considering actions in different or-
ders when the order does not actually matter. Commuting
actions are an obvious cause of this form of symmetry. Un-
fortunately, it is often the case that actions can be permuted
without impact on the plan, but the actions involved do not
commute. This happens when the effects of the actions that
change according to the order of execution are irrelevant to
execution of the plan or to achievement of the goals. For
example, if the domain illustrated in Figure 2 were to also
contain an action,D, with preconditionp then the transpo-
sition ofA andB is no longer a symmetry, since the plan
A;D would be mapped to the invalid structureB;D.

We call symmetries of this third formplan permutation
symmetries. We now proceed to consider the possibilities

for detecting and eliminating these symmetries.

Identifying and Eliminating Plan Permutation
Symmetries

Work on symmetry elimination in the context of CSPs has
mainly concentrated on managing symmetries once they
have been supplied to the system, rather than on identi-
fying them automatically. Symmetries are generally de-
scribed by adding appropriate additional constraints to the
description of a problem. In planning, particularly domain-
independent planning, the emphasis has been on using an
unadorned problem description. This places a far greater
importance on the automatic identification of symmetries
and techniques that have been used to perform this task
have been based on the identification of type structure (Fox
& Long 1999) or finding graph automorphisms on graphs
describing initial and goal states of problems (Joslin & Roy
1997).

The identification of plan permutation symmetries in
general is a difficult problem. However, a subset of the
symmetries are relatively easy to find: any pair of actions
that will commute in all situations leads to a symmetry be-
tween plans in which the pair of actions are both present
and adjacent to one another, either applied simultaneously
or sequentially. Actions commute in all situations if they
are non-mutex. The following definitions are taken from the
account of the semantics ofPDDL2.1 (Fox & Long 2003).

Definition 1 Ground Action Given a planning instance,
I, containing an action schemaA ∈ AsI , the set ofground
actions forA, GAA, is defined to be the set of all the
structures,a, formed by substituting objects for each of the
schema variables in each schema,X, in flatten(A) where
the components ofa are:

• Nameis the name from the action schema,X, together
with the values substituted for the parameters ofX in
forminga.

• Prea, thepreconditionof a, is the propositional precon-
dition of a. The set of ground atoms that appear inPrea
is referred to asGPrea.

• Adda, thepositive postconditionof a, is the set of ground
atoms that are asserted as positive literals in the effect of

a.

• Dela, thenegative postconditionof a,is the set of ground
atoms that are asserted as negative literals in the effect
of a.

• NPa, thenumeric postconditionof a, is the set of all as-
signment propositions corresponding to the numeric ef-
fects ofa.

The following sets of primitive numeric expressions
(PNEs) are defined for each ground action,a ∈ GAA:

• La = {f |f appears as an lvalue ina}

• Ra = {f |f is a PNE in an rvalue ina or appears inPrea}

• L∗a = {f | f appears as an lvalue in an
additive assignment effect ina}

Definition 2 Mutex Actions Two grounded actions,a and
b arenon-interferingif

GPrea ∩ (Addb ∪Delb) = GPreb ∩ (Adda ∪Dela) = ∅
Adda ∩Delb = Addb ∩Dela = ∅

La ∩Rb = Ra ∩ Lb = ∅
La ∩ Lb ⊆ L∗a ∪ L∗b

If two actions are not non-interfering they aremutex.

Proposition 1 ActionsP andQ commute if they are non-
mutex.

Proof: Suppose that the actions are non-mutex but do not
commute. This means that there is some stateS = 〈V, F 〉
(whereV is a valuation on propositions andF is a metric
valuation on primitive numeric expressions) such thatP ;Q
applied toS yields a different result toQ;P applied toS.
Let P ;Q yield 〈V1, F1〉 andQ;P yield 〈V2, F2〉. Then ei-
therV1 6= V2 or elseF1 6= F2 (or both).

Suppose thatV1 6= V2. Then there is some proposition,
p, such that, without loss of generality,V1(p) = true and
V2(p) = false. If V (p) = true then one ofP or Q must
havep on their delete effects in order thatV2(p) = false.
But sinceV1(p) = true it must be thatP deletesp andQ
reachieves it. Then AddQ∩ DelP 6= ∅, which is a contra-
diction. If V (p) = false then a similar argument leads to
the same conclusion.

Therefore, it must be thatF1 6= F2. So there is some
expression,e, such thatF1(e) 6= F2(e). If neitherP norQ
affects the value ofe thenF1 = F = F2, so at least one
must affect the value. If both actions affecte then, since the
actions are non-mutex, it must be that the effects are both
additive effects and they must, therefore, commute, which
is a contradiction. If only one ofP or Q affects the value
of e then, without loss of generality, let it beP . Thus,P
updatese according to some expression,e′ (appearing on

the right of the updating effect). IfQ does not affecte′ in
any way then it is clear thatP andQ commute, so it must
be thatQ affectse′. But thenLQ ∩ RP 6= ∅ and this is,
once again, a contradiction.

This completes all cases and allows us to conclude the
proof. �

Identification of this special case leading to plan permu-
tation symmetries is computationally trivial and can be per-
formed in a preprocessing phase prior to planning — in-
deed, this analysis is conducted by many planners already
in order to properly identify situations in which concur-
rency may be validly exploited. We will refer to this special
case as commuting-step permutation symmetries, or CSPS.

Exploitation

Exploitation of symmetries in systematic search algorithms
involves pruning branches of the search that would visit
parts of the space that are symmetrically equivalent to parts
that have already been explored. There are two main ap-
proaches (Roy & Pachet 1998; Gent & Smith 2000): addi-
tion of constraints to a problem prior to search in order to
prevent exploration symmetric branches and, alternatively,
the enforcement of pruning by modification of the search
algorithm itself. This latter approach admits variants, but
essentially the idea is to record choices and to recognise
attempts to use symmetric choices as they occur.

In the context of a planning system, addition of con-
straints is not straightforward unless the architecture uses
a general constraint solving approach, such as a SAT-
solver (for example, Rintannen uses this approach (Rin-
tanen 2003) and Joslin and Roy also use a similar tech-
nique (Joslin & Roy 1997)). Symmetry breaking during
search is generally more straightforward in a dedicated
planning architecture (Fox & Long 1999; 2002). CSPS can
be handled by a combination of two mechanisms. Firstly,
in the case where commuting actions are considered for ad-
dition at the same time point in a plan we want to ensure
that only one ordering is actually searched. This can be
achieved by the common symmetry-breaking strategy of in-
troducing a lexicograhical ordering constraint: the actions
can only be tried in lexicographically ordered sequences,
where the actions are assigned arbitrary positions within a
predetermined ordering. Thus, if we have actionsA,B and
C to consider for application at the same point in a plan,
we will only allow the sequences:〈A〉, 〈B〉, 〈C〉, 〈A;B〉,
〈A;C〉, 〈B;C〉 and〈A;B;C〉, but not the remaining three
alternative orderings of pairs from the set or any of the other
five orderings of the three actions. Some planning strategies
will impose this restriction on the selection of actions as a
natural consequence of its search organisation. However,
this is not true of all planners. Consider Graphplan when
it is attempting to find a collection of actions to achieve
the goalsp, q andr, where actionA achievesp andr, B

p

q

r

A

B

D

C

Action layer Fact layer

Figure 3: A Graphplan search problem that generates plan
permutation symmetry.

achievesq, C achievesp andD achievesr (see Figure 3).
Then the following possible sequences will be tried, in the
order listed:

Noopp; Noopq; Noopr
Noopp; Noopq; A

Noopp; Noopq; D

Noopp; B; Noopr
Noopp; B; A

Noopp; B; D

A; Noopq
A; B

C; Noopq; Noopr
C; Noopq; A

C; Noopq; D

C; B; Noopr
C; B; A

C; B; D

Notice that whenA is used to achievep then the usual im-
plementations of Graphplan will recognise thatr is already
satisfied and not, therefore, introduce an action to achieve
it separately. It can be seen that there is redundancy in this
list: the second and fifth sets are subsumed by the seventh
and eighth sets. Some implementations of Graphplan will
check that the action set is minimal and will therefore prune
the second and fifth sets (because Noopp is unnecessary
whenA has been added). However, it is also possible to
see these sets as related by symmetry, ignoring the noop ac-
tions. A simple mechanism that can be employed to avoid
this form of symmetry: to prevent two actions from being
applied at the same time if they achieve a common effect.
This is, in fact, correct behaviour under the semantics of
PDDL2.1, in any case, in which mutexes are extended to in-
clude common effect propositions of any kind (Fox & Long
2003).

The second mechanism is concerned with preventing
commuting actions from being tried in different ordersse-
quentially. This is a far more subtle problem because the
pair might notbothcommute with other actions that are be-
ing considered for inclusion in the plan at the same time
point as one or other of the commuting pair. This means

that it is not correct to simply impose a lexicographical con-
straint on the pair irrespective of the context in which they
are applied. A slightly weaker constraint, but one that is
correct, is to insist that no action may be applied in imme-
diate sequence with a collection of (simultaneous) actions,
unless it is mutex with at least one of them. That is, if an
action can be applied simultaneously with a collection of
actions then it cannot be applied at an adjacent time point.
This constraint is only applicable to a planner that is capa-
ble of scheduling actions at the same time point, such as
Graphplan variants. Enforcing this constraint ensures that
an action that commutes with all actions at a given time
point must be pushed to a time point that is not adjacent
to them — enforcement at successive time points will pre-
vent the action from being inserted at all until something
has been added to the plan with which it does not commute.
The effect of this constraint is then to make steps in a plan
move forward (or backward, depending on the direction of
search) through commuting sets of actions until it is adja-
cent to a time point at which non-commuting actions are
applied (or they are at one end of the plan). In a Graphplan
framework this is easy to implement as a check that an ac-
tion being considered for insertion into a plan, to achieve a
goal that is present as the precondition of anoop, is mutex
with an action applied in the previous search layer (which,
due to the backward search in Graphplan, will be the suc-
ceeding layer of actions). In this check we are not interested
in the mutex with the noop that introduced the goal in the
first place. Consider the problem depicted in Figure 3. If
we suppose that actionB is not mutex with any of the other
actions then this constraint will prevent a plan being con-
structed in whichB is executed in one layer and thenA in
the immediately succeeding layer (assuming no other steps
are involved). Similarly, none ofA, C orD may appear in
a layer adjacent to a layer containingB (again, assuming
no other actions are involved).

In the context of Graphplan, this technique must be im-
plemented carefully to avoid a damaging interaction with
no-good learning, including the EBL/DDB technique of
Kambhampati (Kambhampati 2000). The reason for there
being interaction is that goal sets created by gathering pre-
conditions of actions from a layer might be determined to
be unsatisfiable because of the removal of a choice of an ac-
tion by the symmetry elimination. This could lead to a goal
set being inapproproiately marked as unsolvable. In prac-
tice, the goal sets that can be marked in this way are very
unlikely to arise in a different context during an attempt to
satisfy the same original set of top-level goals.

The same kind of symmetry can be used in a sequential
planner, such as FF (Hoffmann & Nebel 2001). In this case
the symmetry can be eliminated by the exploitation of lex-
icographical constraints. The method for achieving this is
to impose an artificial order on the set of commuting ac-

tions and to impose the constraint that when such actions
appear adjacent to one another in a plan then they must ap-
pear in the order implied by this artifical ordering. This
simply ensures that only one instance of each symmetric
set of actions will be generated. FF manages to avoid the
exponential growth in symmetric plan structures in this sit-
uation by recording the visited states as they are generated,
but checking for revisiting states is a more expensive test
than to simply ensure that commuting actions appear in the
correct order.

Results

In order to confirm that elimination of CSPS in this way can
achieve a useful pruning effect in a Graphplan search, we
implemented the mechanism in a version of STAN (Long
& Fox 1999) and explored its performance in a collection
of problem instances. A common difficulty arising in the
exploitation of symmetry is that the overhead of monitor-
ing symmetries and managing the process of elimination
turns out to be greater than the benefits achieved by avoid-
ing the search in redundant parts of the search space. This
can be caused, in part, if the search in the pruned branches
would actually have terminated quickly in any case, due to
other search control strategies working to reduce the search
problem. Thus, we wanted to compare the behaviour of
STAN with and without the new symmetry pruning mecha-
nisms. It should be emphasised that our tests in STAN were
influenced by the ease with which we can manipulate the
behaviour of this system, but that the mechanisms we have
described are not restricted to use in a Graphplan frame-
work.

Our results confirmed that in STAN the first symmetry
(action set symmetry) is already eliminated effectively by
the behaviour of Graphplan. Thus, we present here, in Fig-
ure 4, only results for the second type of symmetry elimi-
nation.

The results reflect behaviour on a subset of problems
from the 3rd IPC. The majority of the results show a sig-
nificant reduction in the number of actions tried in the
search for a plan. A few results are somewhat anomalous.
Driverlog-4 and Zeno-12 lead to the generation of plans that
are one layer longer than the plans generated without sym-
metry. This is not easily explained, and we are still attempt-
ing to uncover the precise reasons, but it appears possible
that it is caused by the interaction with nogood learning. A
second interesting observation is that it is not always the
case that larger numbers of actions tried will automatically
imply a longer time spent in search. This is somewhat sur-
prising, but it is linked to the depth of the branches explored
during the search and to the numbers of goals and mutexes
generated by the actions tried. In several cases, the number
of actions is dramatially reduced by the use of symmetry
elimination, but the search time is not improved, or even

slightly worsened. One part of the explanation for this is
that the current scheme for elimination pushes actions to the
end of the plan, but the search strategy favours pushing ac-
tions earlier. This means that the search can explore many
branches that are doomed to fail before finally attempting
one that could succeed. A better organisation of this search
sequence could exploit the symmetry reduction more effec-
tively. The results for Free-5 and Free-6 are also somewhat
anomalous, the last one in particular showing a massive bur-
den in increased action testing. We cannot explain this situ-
ation satisfactorily, at present, but are continuing to explore
the behaviour in more detail.

Over all, although there are anomalies, the results show
that there is a very significant potential reduction in the
number of action applications searched available through
the use of the symmetry elimination. We suspect that a
closer analysis of the interactions with other mechanisms
in STAN will reveal the reasons for the odd cases that gen-
erate significantly increased search spaces, running counter
to the behaviour shown in the majority of cases.

Further Work

We wish to explore several other avenues. One is the im-
plementation of these ideas within other planning frame-
works, in order to demonstrate its versatility and broader
utility. A second is to expand the forms of symmetry with
which we are working. We have now considered forms of
functional symmetry (Fox & Long 1999) between objects,
dynamic symmetry (Fox & Long 2002) arising between ob-
jects during the development of plans and, in this paper, cer-
tain forms of plan permutation symmetry. There is clearly
scope for extending the plan permutation symmetries we
identify and exploit, but we are also interested in develop-
ing techniques to handle a different problem:almost sym-
metric objects. This idea is explored in more depth in (Long
& Fox 2003), along with the possibilities for extension of
the idea to a broader range of combinatorial search prob-
lems.

An interesting point about plan permutation symmetries
is that the permutation groups that describe them are gener-
ated dynamically as the plan develops. In fact, symmetries
can be added or removed as a plan extends in entirely un-
predictable patterns. This is significant, because it means
that none of the approaches to symmetry breaking that rely
on having ana priori group structure can be applied (some
others & Linton 2003). On the other hand, even the cur-
rent efforts at recognising symmetries dynamically, such
as (Fox & Long 2002), are not capable of handling this kind
of highly unpredictable situation. This suggests that there
is scope for more work on dynamic symmetry control and
exploration of its applicability in a wider range of problems.

Although symmetry can arise very naturally in a plan-
ning domain as a consequence of there being a large number

Problem STAN Action trials STAN+CSPS Pruned Action trials
Depots-1 0.01 27 0.01 0 27
Depots-2 0.03 607 0.03 17 440
Depots-3 0.21 17655 0.22 358 13223
Depots-4 0.4 14583 0.4 503 9640
Depots-7 0.2 8944 0.18 186 6125
Depots-10 1.51 2161 0.81 1566 35000
Depots-13 0.51 2274 0.51 59 2140
Depots-16 1.12 1432 1.12 130 1121
Depots-17 5.9 18867 5.9 1399 18913

Problem STAN Action trials STAN+CSPS Pruned Action trials
DriverLog-1 0.01 32 0.01 0 32
DriverLog-3 0.01 946 0.01 55 767
DriverLog-4 0.26 66222 5.31 13096 1038860
DriverLog-5 0.21 60377 0.2 924 57232
DriverLog-7 0.05 4069 0.04 437 2050
DriverLog-9 0.44 50835 0.38 1967 35882
DriverLog-10 0.64 76666 0.79 3816 57874
DriverLog-11 1.45 121965 1.6 5702 117853

Problem STAN Action trials STAN+CSPS Pruned Action trials
Zeno-1 0.01 3 0.01 0 3
Zeno-2 0.02 57 0.02 0 57
Zeno-3 0.06 181 0.06 54 217
Zeno-4 0.03 39 0.03 0 39
Zeno-5 0.1 430 0.1 8 343
Zeno-6 0.14 1155 0.14 18 207
Zeno-7 0.15 2482 0.15 217 1643
Zeno-8 0.49 313 0.49 29 365
Zeno-9 1.39 17022 0.36 65 1404
Zeno-10 8.61 393633 0.96 971 3509
Zeno-11 3.57 128164 2.15 1927 34750
Zeno-12 7.44 253302 13.48 2821 335011

Problem STAN Action trials STAN+CSPS Pruned Action trials
Sat-1 0.01 43 0.01 0 43
Sat-2 0.06 6542 0.06 0 6542
Sat-3 0.04 1080 0.04 38 534
Free-1 0.04 386 0.04 105 773
Free-2 0.15 2363 0.15 236 4372
Free-3 0.33 6108 0.31 51 2252
Free-4 2.25 444166 2.11 1499 311353
Free-5 1.8 735 2.28 315 26947
Free-6 2.78 401 17.03 1100 1576928

Figure 4: Tables showing results for performance of STAN with and without CSPS elimination.

of functionally equivalent objects or object configurations,
symmetries between objects are usually a consequence of
abstractions in the description of planning domains. For
example, the symmetry between the blocks in Figure 1 is
a consequence of the abstraction that ignores precise posi-
tions of blocks on the table. If the positions were included
then a symmetry that included the configuration of the pairs
of blockstogetherwith their corresponding table positions
would still depend on the abstraction of the relative proper-
ties of the table positions, such as the distances to the edges
of the table. In fact, symmetries in planning domains almost
always follow from abstractions made by the domain engi-
neer that describe objects in terms of just those features that
the domain engineer knows to be relevant to the problem.
By leaving out the irrelevant details, the domain engineer
offers the planner the opportunity to exploit symmetries.

As planning domains become more complex the domain
engineer’s job will become harder. Appropriate abstrac-
tions will not always be obvious: to be certain of which
properties are relevant or irrelevant to the solution of a
given planning problem can require, in the worst case, that
the problem be solved in advance. In order to support
reusable domain encodings, it is also important that encod-
ings should not be engineered only for the solution of one
specific problem. This might mean that a domain should in-
clude details about the properties of objects that could have
a bearing on one problem but that are irrelevant in the so-
lution of another. For example, if the blocks in Figure 1
are only intended to be stacked in different orders then their
relative positions are all that matter, but if they are also to
be used in solving a problem of supporting heavy weights
then their relative rigidity will be relevant, and if they are to
be used in block-paving then their colour and material will
become relevant.

Nebel, Dimopolous and Koehler (Nebel, Dimmopoulos,
& Koehler 1997) have shown that it is possible to apply
filtering techniques (RIFO) to isolate the relevant features
of a planning problem using a static analysis on the do-
main prior to planning. Using this technique prior to the
identification of symmetries will reduce the possibility that
symmetries are lost because of properties included in the
domain that are not required in the solution of the specific
problem. The approach is straightforward: we apply the
filtering technique to strip out irrelevant initial state infor-
mation and then apply the symmetry identification to the re-
duced initial state and goal state, using TIM to derive types
for the reduced domain. Note that it is important to apply
TIM after the domain is filtered because the type structure
can relax as a result of the filtering (TIM will differentiate
types of objects based on their properties, so if properties
are removed then type distinctions can be lost).

Some forms of irrelevance are more subtle than those de-
tected by the RIFO techniques. These include features that

are irrelevant because they cannot make a difference to the
efficientsolution of a problem. This is closely linked to a
property we callalmost symmetry: in many planning prob-
lems, objects begin in slightly different configurations, or
are required to reach slightly different configurations, but
the majority of their behaviour is essentially equivalent to
the behaviour of other objects of the same type. For exam-
ple, consider the problem of transporting a collection of car-
goes from one location to another. Suppose that the cargoes
must all end up at the same place and they all start at the
same place, but that they begin stacked in several separate
piles. Then, the plan will involve unstacking the cargoes,
loading them into the transport, delivering and unloading
them. Notice that the majority of the task is the same for ev-
ery cargo: the loading, delivering and unloading will have
to executed for every cargo. Unfortunately, the fact that the
cargoes all begin stacked in different piles will mean that
there is no symmetry at all of the single-object kind, and
probably very little of the object configuration kind, despite
the fact that the human observer can see that there is a high
degree of symmetry in the body of the problem.

A similar situation might occur in the example of the cof-
fee cups considered earlier if the cups begin with some in a
dishwasher, others in a cupboard, some in a sink requiring
washing and others on a draining board requiring drying.
We refer to configurations like this as almost symmetric:
the objects can be made symmetric by applying an appro-
priate abstraction to the domain. The abstraction is not neu-
tral, as in the case of stripping irrelevant facts, because the
plan is affected by the properties we want to abstract. How-
ever, if we solve the abstracted problem then we can add a
plan fragment to the beginning of the solution in order to
account for the difference between the real initial state and
the abstracted initial state. In doing this, it is important to
observe that the greater the abstraction the more difficult it
will be to find the appropriate plan prefix, and also that the
plan constructed by prepending a fragment to account for
the abstraction can lead to an overall solution that is less ef-
ficient that one that is constructed directly from the original
problem. For example, an abstraction of the cargoes would
be to suppose that their initial positions are irrelevant and
treat them as though they could all be immediately loaded.
The plan prefix will then have to arrange for the cargoes to
be available at the right point in the sequence of loading by
clearing the higher cargoes. A simple plan prefix is to sim-
ply unstack all the cargoes at the outset, so that they can be
freely loaded when necessary, but this could involve steps
that are unnecessary, since loading in an appropriate order
will ensure that each cargo is clear in the original config-
uration, without having to add extra steps to unstack them
all. A more complex situation arises if the cargoes can only
be unstacked onto a limited set of pallets, since there might
not be a plan prefix that can achieve the abstracted situation

in which all the cargoes are simultaneously unstacked.
In general, almost symmetries can be seen as symmetries

constructed by adding to or removing from the properties in
the initial state and goal formula. It is possible to identify
the objects for which symmetry is almost present by exam-
ining the type structure, but it is harder to determine what
editing of the initial state and goal formula is a safe abstrac-
tion to introduce symmetry. Notice that modification of the
goal formula by addition of properties will make the prob-
lem harder (possible unsolvable) while removal of proper-
ties will require that a plan post-fix be added to manage the
achievement of the abstracted goals. Similarly, removal of
initial state facts will make the problem harder, while addi-
tion of new facts can create an unreachable state (such as
the state in which all the cargoes are clear in the preceding
example).

Exploration of an appropriate handling of this abstrac-
tion mechanism is ongoing research. We have identified
the relevant concept ofn-symmetry, which hold between
two objects if they can be made symmetric by the appli-
cation ofn actions. We believe that for small values ofn
this concept leads to constrained edits of the initial state and
goal formula which compromise between the opportunities
to exploit symmetry and the cost of accounting for the ab-
straction in the final plan.

Conclusions
Symmetry in search problems is an exciting area of cur-
rent research, particularly in the UK, where recently two
EPSRC-funded grants have been awarded to support work
in symmetry1. Symmetry in planning has already stimu-
lated several pieces of work, but there is scope for much
more. In this paper we have introduced the notion of plan
permutation symmetry. It is a symmetry that arises in many
planning problems. There is clearly work to be done on
understanding the right way to exploit the symmetry elim-
ination technique in Graphplan and, presumably, in other
architectures, but the results show a preliminary indication
that the symmetry is there to be eliminated and to offer
gains if it can be harnessed successfully.

References
Audemard, G., and Benhamou, B. 2002. Reasoning by
symmetry and function ordering in finite model genera-
tion. In Voronkov, A., ed.,Proceedings of the 18th In-
ternational Conference on Automated Deduction (CADE-
18), volume 2392 ofLNCS, 226–240. Springer Verlag.

Bacchus, F., and Kabanza, F. 1998. Planning for tempo-

1Ian Gent and Steve Linton have been awarded a grant to ex-
plore the use of GAP to provide a group-algebra foundation on
which to build symmetry pruning in CSPs. The authors have also
been awarded a grant to work on symmetry in planning.

rally extended goals.Annals of Mathematics and Artificial
Intelligence22:5–27.

Backofen, R., and Will, S. 1999. Excluding symmetries in
constraint-based search. InProceedings of CP-99, volume
1713 ofLNCS. Springer-Verlag.

Barret, A.; Christianson, D.; Friedman, M.; Golden, K.;
Penberthy, J.; Sun, Y.; and Weld, D. 1996. UCPOP v4.0
user’s manual. Technical Report TR 93-09-06d, Dept. of
Computer Science and Engineering, University of Wash-
ington, Seattle, WA.

Blum, A., and Furst, M. 1995. Fast Planning through
Plan-graph Analysis. InProceedings of 14th IJCAI.

Crawford, J.; Ginsberg, M.; Luks, E.; and Roy, A.
1996. Symmetry breaking predicates for search problems.
In Proceedings of the Fifth International Conference on
Knowledge Representation and Reasoning (KR ’96), 148–
159.

Emerson, E., and Sistla, A. 1996. Symmetry and model-
checking.Formal methods in system design9 (1/2).

Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. InProceedings of
16th IJCAI.

Fox, M., and Long, D. 2002. Extending the exploitation
of symmetries in planning. InProceedings of AIPS’02.

Fox, M., and Long, D. 2003. An extension toPDDL for
expressing temporal planning domains.Journal of AI Re-
searchForthcoming.

Gent, I. P., and Smith, B. 2000. Symmetry breaking dur-
ing search in constraint programming. InProceedings of
ECAI.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.JAIR
14.

Ip, C. N., and Dill, D. L. 1996. Better verification through
symmetry.Formal Methods in System Design9.

Joslin, D., and Roy, A. 1997. Exploiting symmetry in
lifted CSPs. InProceedings of 14th National Conference
on AI (AAAI-97).

Kambhampati, S. 2000. Planning graph as (dynamic)
CSP: Exploiting EBL, DDB and other CSP techniques
in graphplan. Journal of Artificial Intelligence Research
12:1–34.

Long, D., and Fox, M. 1999. The efficient implementation
of the plan-graph inSTAN. JAIR10.

Long, D., and Fox, M. 2003. Symmetries in planning
problems. InProceedings of SymCon’03.

McDermott, D. 2003. Reasoning about autonomous pro-
cesses in an estimated-regression planner. InProceedings
of the International Conference on Automated Planning
and Scheduling (ICAPS’03).

Nebel, B.; Dimmopoulos, Y.; and Koehler, J. 1997. Ig-
noring irrelevant facts and operators in plan generation. In
Proc. of 4th European Conference on Planning, Toulouse.

Rintanen, J. 2003. Symmetry reduction for SAT represen-
tations of transition systems. InProceedings of the 13th
International Conference on Planning and Scheduling.

Roy, P., and Pachet, F. 1998. Using symmetry of global
constraints to speed up the resolution of CSPs. InWork-
shop on Non-binary Constraints, ECAI.

some others, I. G., and Linton, S. 2003. Not sure what this
was called. InProceedings of CP-03, LNCS. Springer-
Verlag.

