Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

The role of CN and CO ligands in the vibrational relaxation dynamics of model compounds of the [FeFe]-hydrogenase enzyme

Kaziannis, Spyridon and Wright, Joseph A. and Candelaresi, Marco and Kania, Rafal and Greetham, Gregory M. and Parker, Anthony W. and Pickett, Christopher J. and Hunt, Neil T. (2011) The role of CN and CO ligands in the vibrational relaxation dynamics of model compounds of the [FeFe]-hydrogenase enzyme. Physical Chemistry Chemical Physics, 13 (21). pp. 10295-10305. ISSN 1463-9076

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The vibrational dynamics of (mu-propanedithiolate)Fe-2(CO)(4)(CN)(2)(2-), a model compound of the active site of the [FeFe]-hydrogenase enzyme, have been examined via ultrafast 2D-IR spectroscopy. The results indicate that the vibrational coupling between the stretching modes of the CO and CN ligands is small and restricted to certain modes but the slow growth of off-diagonal peaks is assigned to population transfer processes occurring between these modes on timescales of 30-40 ps. Analysis of the dynamics in concert with anharmonic density functional theory simulations shows that the presence of CN ligands alters the vibrational relaxation dynamics of the CO modes in comparison to all-carbonyl model systems and suggests that the presence of these ligands in the enzyme may be an important feature in terms of directing the vibrational relaxation mechanism.