Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

Effect of surface immobilization on the electrochemiluminescence of ruthenium-containing metallopolymers

Dennany, L and Hogan, C F and Keyes, T E and Forster, R J (2006) Effect of surface immobilization on the electrochemiluminescence of ruthenium-containing metallopolymers. Analytical Chemistry, 78 (5). pp. 1412-1417. ISSN 0003-2700

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The effect of surface confinement on the electrochemiluminescence (ECL) properties of metallopolymer [Ru(bpy)(2)(PVP)(10)](2+), where bpy is 2,2'-bipyridyl and PVP is poly(4-vinylpyridine), is reported. Immobilizing a luminescent material on an electrode surface can substantially modulate its photophysical properties. Significantly, our study revealed that the overall efficiency of the ECL reaction for the metallopolymer film is almost four times higher, at 0.15%, than the highest value obtained for [Ru(bpy)(2)(PVP)(10)](2+) dissolved in solution, (phi(ECL) = 0.04%). Electrochemistry has been used to create well-defined concentrations of the quencher Ru3+ within the film. Analysis of both the steady-state luminescence and lifetimes of the film reveals that static quenching by electron transfer between the photoexcited Ru2+* and the Ru3+ centers is the dominant quenching mechanism. The bimolecular rate of electron transfer is (2.5 +/- 0.4) x 10(6) M-1 s(-1). The implications of these findings for ECL-based sensors, in terms of optimum luminophore loading, is considered.