Picture of smart phone

Open Access research that is better understanding human-computer interaction...

Strathprints makes available scholarly Open Access content by researchers in the Department of Computer & Information Sciences, including those researching information retrieval, information behaviour, user behaviour and ubiquitous computing.

The Department of Computer & Information Sciences hosts The Mobiquitous Lab, which investigates user behaviour on mobile devices and emerging ubiquitous computing paradigms. The Strathclyde iSchool Research Group specialises in understanding how people search for information and explores interactive search tools that support their information seeking and retrieval tasks, this also includes research into information behaviour and engagement.

Explore the Open Access research of The Mobiquitous Lab and the iSchool, or theDepartment of Computer & Information Sciences more generally. Or explore all of Strathclyde's Open Access research...

Effect of surface immobilization on the electrochemiluminescence of ruthenium-containing metallopolymers

Dennany, L and Hogan, C F and Keyes, T E and Forster, R J (2006) Effect of surface immobilization on the electrochemiluminescence of ruthenium-containing metallopolymers. Analytical Chemistry, 78 (5). pp. 1412-1417. ISSN 0003-2700

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The effect of surface confinement on the electrochemiluminescence (ECL) properties of metallopolymer [Ru(bpy)(2)(PVP)(10)](2+), where bpy is 2,2'-bipyridyl and PVP is poly(4-vinylpyridine), is reported. Immobilizing a luminescent material on an electrode surface can substantially modulate its photophysical properties. Significantly, our study revealed that the overall efficiency of the ECL reaction for the metallopolymer film is almost four times higher, at 0.15%, than the highest value obtained for [Ru(bpy)(2)(PVP)(10)](2+) dissolved in solution, (phi(ECL) = 0.04%). Electrochemistry has been used to create well-defined concentrations of the quencher Ru3+ within the film. Analysis of both the steady-state luminescence and lifetimes of the film reveals that static quenching by electron transfer between the photoexcited Ru2+* and the Ru3+ centers is the dominant quenching mechanism. The bimolecular rate of electron transfer is (2.5 +/- 0.4) x 10(6) M-1 s(-1). The implications of these findings for ECL-based sensors, in terms of optimum luminophore loading, is considered.