Picture of server farm and IT infrastructure

Where technology & law meet: Open Access research on data security & its regulation ...

Strathprints makes available Open Access scholarly outputs exploring both the technical aspects of computer security, but also the regulation of existing or emerging technologies. A research specialism of the Department of Computer & Information Sciences (CIS) is computer security. Researchers explore issues surrounding web intrusion detection techniques, malware characteristics, textual steganography and trusted systems. Digital forensics and cyber crime are also a focus.

Meanwhile, the School of Law and its Centre for Internet Law & Policy undertake studies on Internet governance. An important component of this work is consideration of privacy and data protection questions and the increasing focus on cybercrime and 'cyberterrorism'.

Explore the Open Access research by CIS on computer security or the School of Law's work on law, technology and regulation. Or explore all of Strathclyde's Open Access research...

The influence of poly (2-methoxyaniline-5-sulfonic acid) on the electrochemical and photochemical properties of a highly luminescent ruthenium complex

Dennany, Lynn and O'Reilly, Emmet J. and Innis, Peter C. and Wallace, Gordon G. and Forster, Robert J. (2008) The influence of poly (2-methoxyaniline-5-sulfonic acid) on the electrochemical and photochemical properties of a highly luminescent ruthenium complex. Electrochimica Acta, 53 (13). pp. 4599-4605. ISSN 0013-4686

[img]
Preview
PDF (The influence of poly (2-methoxyaniline-5-sulfonic acid) on the electrochemical and photochemical properties of a highly luminescent ruthenium complex)
Electrochimica_Acta_2008.pdf
Preprint

Download (502kB) | Preview

Abstract

Immobilisation of a luminescent material on an electrode surface is well known to substantially modulate its photophysical and electrochemical properties. Here a positively charged ruthenium metal complex ([Ru(bpy)(3)](2+)) is immobilised on all electrode surface by ion paring with a sulfonated conducting polymer poly(2-methoxyaniline-5-sulfonic acid), (PMAS). Significantly, our study reveals that the electron transport between the ruthenium metal centres can be greatly enhanced due to the interaction with the conducting polymer when both are surface confined. Charge transfer diffusion rates in the present system are an order of magnitude faster than those found where the metal centre is immobilised within a non-conducting polymeric matrix. Electron transport appears to be mediated through the PMAS conjugated structure, contrasting with the electron hopping process typically observed in non-conducting metallopolymers. This increased regeneration rate causes the ruthenium-based electrochemiluminescence (ECL) efficiency to be increased. The impact of these observations on the ECL detection of low concentrations of disease biomarkers is discussed. (c) 2007 Published by Elsevier Ltd.