Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

Ligand exchange between arylcopper compounds and bis(hypersilyl)tin or bis(hypersilyl)lead: Synthesis and characterization of hypersilylcopper and a stannanediyl complex with a Cu-Sn bond

Klinkhammer, K W and Klett, J and Niemeyer, M (1999) Ligand exchange between arylcopper compounds and bis(hypersilyl)tin or bis(hypersilyl)lead: Synthesis and characterization of hypersilylcopper and a stannanediyl complex with a Cu-Sn bond. Chemistry - A European Journal, 5 (9). pp. 2531-2536. ISSN 0947-6539

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Bis(hypersilyl)tin (1) and bis(hypersilyl)lead (2) [hypersilyl= Hyp = tris(trimethylsilyl)silyl] undergo ligand exchange reactions with other carbene homologues to yield heteroleptic distannenes or diplumbenes. Here we report the extension of this reaction principle to coordinatively unsaturated arylcopper(I) compounds. The primary reaction products are probably adducts with the carbene homologues as Lewis base and the arylcopper compounds as Lewis acids. This is followed by rearrangement to the adducts HypCu-E-(Hyp)Ar* (E = Sn (6) and Pb (7); Ar* = C(6)H(3)Mes(2)-2,6,) of hypersilylcopper (9) and the heteroleptic stannanediyl or plumbanediyl. The complex may be the final product or may dissociate into its component parts, free hypersilylcopper (9) and the appropriate heteroleptic carbene homologue. The colorless hypersilylcopper forms a trimer (9), in the solid state with short Cu Cu contacts (238.4-241.5 pm). All observed Cu-Si bonds are relatively long. However, shorter distances (234.9-237.4pm) alternate with longer ones (249.2 pm), such that quasi-monomeric hypersilylcopper units can be identified. The dark green complex 6 exhibits a shorter Cu-Si bond (227.3 pm), The Sn-Cu bond length was determined to be 249.9 pm. The turquoise plumbanediyl Pb(Hyp)Ar* (8) is the first strictly monomeric mixed aryl silyl derivative, even in the solid state. The steric repulsions are obviously less than in the parent homoleptic compounds because the Pb-C bond in 8 is shorter (229.0 pm) and the C-Pb-Si angle (109.2 degrees) is markedly smaller.