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Abstract. Location sharing services are becoming increasingly @opéalthough
many location sharing services allow users to set up priyatigies to control
who can access their location, the use made by service gmvidmains a source
of concern. Ideally, location sharing providers and midélee should not be able
to access users’ location data without their consent. kghper, we propose a
new location sharing protocol called Longitude that easesgy concerns by
making it possible to share a user’s location data blindlg alfowing the user
to control who can access her location, when and to what degfr@recision.
The underlying cryptographic algorithms are designed fBiS&nabled mobile
phones. We describe and evaluate our implementation fdtéxas One Android
mobile phone.

1 Introduction

Location sharing is an increasingly popular function ofiabnetworking services, al-
lowing users to share their location with family and frienBgamples include Google
Latitude [1], Yahoo Fire Eagle [2], and Loopt [3]. Perhaps thiggest user concern
about location sharing services is privacy. Many servidesvdhe users to control who
will have access to their location data, over what periodnoét and to what degree of
precision. However, for many users, the service providersbso a source of concern.
Will not the location sharing service use location data todktriment of the user?

Users’ location data is normally saved by the service pravidnfortunately, this
allows providers to track, profile and target users [4, 5] all as aggregrate the data
and sell it to others. The typical approach to informing aderto provide a lengthy
webpage that states what the service provider may do witllatee The webpage is
usually written in a sufficiently obfuscated way to ensurat tlew users will bother
reading it, and often to hide the fact that providers wanite themselves a high degree
of access to the data. A related, but important concernaistiie service provider may
be the target of network intrusions and untrustworthy iessdas well as requests from
law-enforcement agencies [6].

This paper describes a protocol called Longitude for lacesharing that uses cryp-
tography to limit service provider access to location ditia.aimed at providers on the
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Internet or middleware to provide location sharing blindlghout the hassle of com-
pliance to data protection and location data requests.sitires that users are able to
share their location but are not tracked. Note that the podte not a replacement for
traditional location-services like Google maps that ttateslocations into maps.

Naively, a user (Alice) could encrypt her location beforadiag it to the location
sharing provider (Luke), effectively protecting it from keior other adversaries. Alice
would have to securely disseminate the key to her friendb @ul Carol) and revoke it
if she wanted to prevent access to any friend or if the key visdated. Rather than a
common shared key, Alice could establish pair-wise se@&gs with each of her friends
or use asymmetric keys, both requiring a great deal mordiaddi storage, computa-
tion and communication overheads. A more flexible approaateeded, particularly
for resource-constrained mobile devices.

Longitude has the following characteristics:

1. Privacy preserving. Longitude enables location-stigpioviders or middleware to
disseminate user location data blindly. The data is sggcaialcrypted. Alice can
control which of her friends can see her location, at whaetirand to what degree
of precision.

2. Simple key management: Alice only needs to keep her owrokdyer mobile de-
vice. She can remove any of her friends at any time withoettifig other friends.
The revocation process can be done by Alice without requiginy interactions
with her friends.

3. Lightweight cryptography. Most of the computationafiyansive cryptographic op-
erations in Longitude are done by the service provider, mathe mobile device.
Computation and battery life for mobile devices can be ojséuh further by pre-
computing cryptographic material when the mobile deviasisnected to a power
source.

4. Constant communication overhead. Longitude’s comnaiitic costs do not in-
crease with the number of friends (receivers). No matter mamy friends a user
has, each piece of location data is encrypted and sent omly. drherefore, the
overhead of data communication is minimised.

The paper is organised as follows: in Section 2, we summtréseslated work; in
Section 3, we discuss the system and security model as wislkasitial assumptions;
in Section 4, we present Longitude, how to fine control usiapy and issues related
to user revocation; in Section 5, we explain the underlyingptographic techniques;
in Section 6, we describe and evaluate a prototype impleatientof Longitude for
Android phones; in Section 7, we conclude the paper and sisgur future plans.

2 Related Work

Location sharing services have attracted a lot of atterftiom industry [1-3], and
the development of GPS-enabled mobile phones makes it eagnse and share user
location. According to [7], these services can be categdiiisto two types: (1) purpose-
driven, in which the requester has a specific need for theslrseation, e.g. coordinating
meetings, arranging transportation, sending remindeds(2) social, in which location



information is shared simply because it is interesting ortiudo so. However, users
are concerned about their privacy and according to [8]tiexjsndustry guidelines and
implementations do not adequately address these concerns .

Previous research on location privacy has focused on anigayion. For example,
in [9], the authors describe a middleware system which dedend reorders messages
from users within a mix zone to confuse an observer. In [16jeghanism called cloak-
ing is proposed that conceals a user within a groug ptople. To achieve this, the
accuracy of the disclosed location is reduced so that a s$edistinguishable from at
leastk — 1 other users. In [11}-anonymity is achieved by an ad-hoc network formed
by the user and surrounding neighbours, while [12] showstoaechievec-anonymity
in a distributed environment where there are multiple noltuding servers. Anonymi-
sation has a fundamental difference with location shafiihg.goal of anonymisation is
to prevent others from relating a location to a user; on themand, the goal of loca-
tion sharing is to let authorised users know where a userhisréfore, anonymisation
is not directly applicable here.

Most existing location sharing services do offer the useraesform of controls
over their privacy. In [8], the authors examine 89 locatibaring services and the most
widely adopted privacy controls are white list, being iilvis, blacklist, group-based
permission and providing less detailed location. Seversdarch projects in this area
have tried to provide more expressive and effective pdtiaged privacy controls. For
example, Locaccino [13] allows users to specify more finéngah policies based on
temporal and spatial restrictions. The pawS system [1d)wlla user to use P3P policies
to define their location privacy settings and negotiate withlocation service provider.
The main drawback in all such approaches is that the users tnuss the provider,
its privileged employees and the security of the infragtrrez The user’s privacy will
also be compromised if the service provider is required $oldse the data to a law-
enforcement agency.

In alocation sharing services, the provider usually actstasker to disseminate the
location information to the authorised receivers. In mdshe cases the provider does
not need to know the data content in order to provide thisisenin [15] a system for
sharing user location is described which provides pratadtiom the provider. Users
use pairwise symmetric key encryption or asymmetric keyngation to prevent the
provider from learning their location. However, the useeda&to store multiple keys.
Moreover the user has to send multiple copies of the sameekath encrypted under a
different key in order to let all her friends be able to get loeation. The overheads of
key management, computation and communication increasarly with the number
of friends.

Some work [16—19] has been done dealing with the problemedesving privacy
in proximity services. Proximity service is a sub-type afdtion sharing service which
notifies and displays a friend’s location if the friend is rima While in Longitude we
consider the more general location sharing where a userema &iend’s location no
matter the friend is near or far away from the user.



3 Models and Assumptions

3.1 Systems model

The Longitude protocol has the following parties: the lamatsharing service provider
and the set of users registered with the provider. We asshateach user has a GPS-
enabled mobile phone that can sense the user’s currenidocatd send it to the
provider. The provider stores the location and along witheaser configuration data.
Users define which other users are authorised to receiveltizaition. Authorised re-
ceivers can be removed at any time by the user. Users canefise dhe precision of
the location that will be seen by a particular receiver, aocgurate to 1km, 5km, 10km,
100km.

3.2 Security Model

We consider the service-provider to be honest-but-curiblat is, the service provider
will follow the protocol correctly, but will try to find out asuch secret information as
possible. To simplify the presentation in the paper we asdat there are mechanisms
in place which ensure integrity and availability of the stbdata. We also assume that
there is a proper authentication mechanism which allowsisies to identify the ser-
vice provider and their friends and vice versa. In additiwe,assume that each user
securely protects their cryptographic key on their mob#éeide. Since location data
will be transmitted through public networks and wirelesswoeks, we assume that it is
possible that an unauthorised user can intercept the data.

4 Longitude Protocol

4.1 Overview

We first describe how the protocol works in general. The prolts depicted in Figure
1. In the figure we only show two users, Alice and Bob.

The design of Longitude is based on proxy re-encryption.[l20§ proxy re-encryption
scheme, a ciphertext encrypted by one key can be transfdsgnagroxy function into
the corresponding ciphertext for another key without réagaany information about
the keys and the plaintext. Applications of proxy re-entiypinclude access control
systems [21] and searchable data encryption [22]. Theldefdhe proxy re-encryption
scheme used in Longitude will be presented in Section 5.

To share her location with Bob, Alice and Bob must first reggistith the location
service provider (Luke). During registration, Alice andBalso obtain public crypto-
graphic parameters and generate a public/private key gedlly on their mobile de-
vices. After registration, Bob can send a request to Alidénasher to allow him to
see her location. The request can be done out of band witheoitving Luke. In the
request, Bob provides a copy of his public key. If Alice agreshe computes a re-
encryption key using Bob’s public key and her own private (@xplained in detail in
section 5). She also decides how accurate the location gtoeufor Bob and gener-
ates a corresponding precision mask (explained in sect®n Bhe re-encryption key
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Fig. 1. Overview of Longitude Protocol

and the precision mask are sent to Luke, and act as an awattanipolicy that allows
Bob to retrieve Alice’s location. Alice can now send encegptocation data to Luke.
Bob’s public key can also be discarded by Alice. Luke onlyesa user’s most recent
location. The previous location is overwritten by a newlga®ed location. When Bob
wants to know where Alice is, he sends a request to Luke, wir@ves Alice’s last
encrypted location, applies the re-encryption key andcpedi defined by Alice then
sends it to Bob. Bob can then decrypt the location receivaa fruke and process it as
needed, e.g. to display Alice’s location on a map.

4.2 Location Encryption and Location Granularity

Proxy re-encryption, though very efficient, is still too 8reonsuming to encrypt large
volumes of data. To overcome this, in Longitude the actutd gaencrypted by a more
efficient hybrid encryption scheme, where a secure symomgtieam cipher is chosen
to encrypt the location data under a random key and the rakegris then encrypted
using the proxy re-encryption scheme. The stream cipheralews Luke to modify
part of the ciphertext without rendering it undecryptaleparticular we can use this
to allow Alice to define the granularity that her locationéen by different friends.

A location consists of a latitude and longitude. Both parts @presented in the
format of decimal degrees. Obviously, a pair (51.49873,7917) gives more accurate
information about Alice’s location than just (51.4, -0.Ir).Longitude, we use this to
allow Alice to define precision masks for each friend (seaufég?). Before encryp-
tion, locations are encoded as a pair of fixed-length ASCimg$. Each String has 11
characters in the format of “siiiffffff” where “s” is for theign, “iii” is for the inte-
gral part and “fffffff” is for the fractional part. For exang51.49875 is encoded as
“+0514987500". When using a stream cipher to encrypt, theast cipher generates
a stream of random bits. The location strings are also ctewénto bits and XORed
with the random bit stream. Precision masks govern how magitsdvill be released
to friends. Each precision mask is a pair of integers fromDitd_uke simply truncates
the encrypted location to the length specified by the precisiask before returning
it to a friend. The truncated encrypted location informatian still be decrypted after
that because the decryption is another XOR. The benefitsng psecision masks are
two fold: (1) Alice does not have to encrypt the same locatibudifferent precision
levels for different friends (2) applying the precision kates not require Luke to



first decrypt the data, so Luke can do it blindly. An examplasihg precision masks
is shown in Figure 2. In the example, point 1 (+051.49875000:1791700) is Alice's
actual location , while point 2 (+051.49, -000.17) and p@irft051.4, -000.1) are the
displayed locations for two different precision masks Y&&d (5,5), i.e. what would be
sent to two different friends.
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Fig. 2. Applying precision mask to encrypted location

Alice can also specify time-based policies to further colfter privacy. An example
of such a policy could be “My co-workers should not see myfioceduring weekends”.
The policies are specified by Alice as constraints and ugldad Luke. The policies
do not need to be encrypted because they contain no locattar(@though they might
contain other sensitive information). Luke is responsiblechecking and enforcing
these policies when Alice’s location is requested by hewookers.

4.3 Friend Revocation

If Alice wishes, she can revoke Bob from accessing her looatn Longitude, revoca-
tion can be accomplished in two different ways.

The first is called weak revocation. In this case, Alice syng¢nds a request to
Luke asking that Bob should not receive her location any mbuo&e then removes
the corresponding re-encryption key. Since Alice’s keyr @aid Bob’s key pair are
generated independently, it is easy to prove that aftergkencryption key has been
removed by Luke, Bob will not be able to decrypt any of subsedocation updates
from Alice.

Weak revocation has low overhead and is secure if Luke andddatot collude.
However, if Luke colludes with Bob and does not remove themeryption key, Bob
will still be able to track Alice. To prevent collusion, Akecan use strong revocation by
updating her keys. Updating only changes two componentsilitkéys and leaves the
other parts unchanged. Alice also updates the re-encryf#ips for all friends except
Bob. After Alice has done this, Bob'’s re-encryption key wilbt be able to decrypt



future locations encrypted using Alice’s new public key.t&lthis process does not
require Alice to interact with any of her friends. The updzae be done by Alice herself
using existing information. If Alice is authorised to reeeiocation updates from her
friends, those friends do not need to be involved either. fEaencryption keys they
generated for Alice are still valid because these keys amergéed using an unchanged
component in Alice’s public key. The details of the key ugdalgorithm can be found
in Section 5.

5 Proxy Re-encryption

Public parameters

(G1,Gy,e.9)
Re-encryption key from Alice to Bob
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Re-encryption
/ Luke ¢
Alice's Ciphertext )
C=(g",m-Zy)

/

@ Decryption
—L
Co ¢y b =m

Alice Bob
Alice's key pair Bob's key pair
P = (hats haz, Za) phy = (R, ha, Zy)

ska = (Za, Ya) sky, = (b, o)

Fig. 3. The proxy re-encryption scheme

The proxy re-encryption scheme used in Longitude is addpted[21]. The scheme
has many desirable features, for example, the proxy fumésiainidirectional and the
user only needs to store her own key. We extended the schetmewew key struc-
ture, support for user revocation and redesigned re-etioryand decryption functions.
Our scheme is also provably secure under the conventior@sioral Bilinear Diffie-
Hellman (DBDH) assumption [23], while the security of thég@mal scheme is based on
a special extension of the DBDH assumption. The proxy reygrtion scheme consists
of 8 functions:

— The Setup funcition needs to be run once by the location service preavid ini-
tialise the service. It generates public parameters whiihbe used from then
on. The provider does not need to keep any secret informafien running this
function.

— TheKeygenfunction is run on the user’'s mobile device when the usesstets. It
also only needs to be run once.

— TheEncrypt function is run on the user’s device to encrypt the locatiatadvhich
is going to be sent to the provider.



— The RekeyGenfunction is run on the user’s device to generate the re-gicny
key for an authorised friend.

— The ReEncrypt function is run by the provider to transform location cipests
sent to friends.

— TheDecrypt function is run on a friend’s device to decrypt the locatiosseived
from the provider.

— TheKeyUpdatefunction is run to update the user’s key pair during strongca-
tion.

— The ReKeyUpdate function is run to update a re-encryption key during strong
revocation.

5.1 Cryptographic Scheme

Our scheme is constructed on top of bilinear pairings. Weflyrreview bilinear pair-
ings. We use the following notation:

— (1 andG, are two cyclic groups of prime order
— gis agenerator of7;.
— elis abilinear pairing: : G; x G; — G2 which has the following properties:
1. Bilinearity: for allu,v € Gy, a,b € Z,, we havee(u®, v*) = e(u, v)®.
2. Non-degeneracy{g, g) # 1.
3. Computable: There exists an efficient algorithm to comput;, v) for all
u,v € Gy.

We now describe the proxy re-encryption algorithm in defdie encryption/decryption
scheme is shown in Figure 3.

— Setupg): Given the security parameterchoose two groups; , G of prime order
g and a bilinear pairing : G; x G; — Gs5. Then choose a random generator
g € G;. Finally set the public parametetiram = (G1, G2, €, g) for the system.

— Keygenparam): Useri chooses:;, y;, z; uniformly randomly fromZ, and com-
putesh;; = g¥i, hio = ¢%,7; = e(g*i, g*). The user’s public key i®k; =
(hi1, hi2, Z;), the user’s private key isk; = (z;, y:).

— Encrypt(m, pk;, param): To encrypt a message (e.g. location) with the u&er
public key, choose; uniformly randomly fromZ,, and compute ciphertext =

gri,m - Z7).

- E?ekeyGengka, pky, param): To generate a key which can transform a ciphertext
encrypted with a user’s public key to a ciphertext which can be decrypted using
another usel’s private key, the user chooses: uniformly randomly fronz,, and
computesk,—py = (hy,9"ho ).

— ReEncrypt(C,, k., param): To transform a ciphertext encrypted witls pub-
lic key into a ciphertext which can be decrypted ushiggprivate key, the provider
computes:

C1 = e(g”laa hg1)7

Zyre(gm, 9"y )

g=)e-e(g™,g") -e(g™, g
n

C2

71:1120.)
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The new ciphertext’, = (c1, ¢2).

— Decrypt(sk;, C;): The re-encrypted ciphtertextis decrypted as follcstcl—y_i =
v n i n 7L rin —T; 7,’I’7,L
m-e(g", g") - e(g" )T =mee(g,9)" " - e(g,g)” T = m
— KeyUpdate(sk;, pki, param): The user only needs to change two components in
the pair: the secret key will be changed frdm,, y,) to (z/,,y,) wherez/, is a

random integer fron&, and the public key will be changed frofh,1, ha2, Z,) to
(h'ala haQ; Z;_a) .
— ReKeyUpdate(k,—p, param): For a re-encryption keyhy,, g"h,5*), the user

raises both of the values to the powerfcéf, wherex!, is the random integer gen-
erated in the KeyUpdate function. The new re-encryption ¢ay be effectively

written as(hy,, g™ h_, *) wheren’ = n - i—z
5.2 Security Against an Unauthorised User

Our scheme is semantically secure against an unauthorssgdTthe notion of secure
against an unauthorised user is captured through the fioigpgame.

Game,: The adversary is an unauthorised user:
Game Setup The challenger runsSetup(k) to generate the public parameg
ter (G1,Ga, e, g) given the security parametér. It also usesKeygen{param)
to generate an arbitrary number of public/private key paits/sk; =
(hi1, hiz, Z;) / (x4, yi). Then the challenger randomly choose a pair/ sk, .

The public parameter and all the public keys are gived to
Phase 1 A is given oracle access &ncrypt (-, pk;, param). The adversary out-
puts a pair of message,, m; of the same length.
Challenge The challenger randomly choosks— {0,1} and then a ciphertext
C =Encrypt(my, pkq, param) is returned toA.
Phase 2 A continues to have oracle accesE&trypt (-, pk;, param).
Guess A outputs a bit’ and wins the game if = b.

Theorem 1. The proxy encryption scheme is semantically secure against an unautho-
rised user, i.e. for all PPT adversaries A, there exists a negligible function negl such
that:

1
Pr(Succ?™ (k)] < 5T negl(k)

The proof of Theorem 1 relies on the Decisional Bilinear BHfiellman (DBDH) as-
sumption [23] which is stated as follows: giveng®, ¢°, ¢” € G andr € G», every
probabilistic polynomial time adversai has only a negligible probability in deciding
whetherr = e(g, g)*#7 or not, i.e.:

PriA(g, 9%, 9", 97 e(g,9)*"") = 1] — Pr[A(g,9%,9°. 9", e(g,9)°) = 1] < negl(k)



Proof. Let's consider the following PPT adversafy who attempts to solve the DBDH
problem usingA as a sub-routined’ is given a tuplg Gy, Go, e, g, g%, g7, g7, ) such
thatg, g, ¢°,¢" € G1 andr € G,. A’ does the following:

Game Setup A’ setsparam = (G1,Ga,e,g). A’ also chooseg, € Z, ran-
domly and setgk, = (g¥, g7,e(g%,g")). A’ then chooses an arbitrary numbe
of random integer$x;, y;, z;) € Z, and computesk; = (g¥:, g%, e(g™, g*)).
The public parameters and all the public keys are giveA.to

Phase 1 Whenever.A requires oracle access tncryt(-, pk,, param), A
chooses a random integey € Z, and encrypts the message using the corfe-
sponding public key agg"®, m - e(g%, ¢g”)"*). At the end of phase 14 outputs
two messages:y, m; of the same length.

Challenge A’ randomly choosels < {0, 1} and send$g®, m - r).

Phase 2 Whenever.A requires oracle access tncryt(-, pk,, param), A
chooses a random integey € Z, and encrypts the message using the correspand-
ing public key agg"*, m - e(g*, g7)").
Guess A outputs a bib'.

=

If ¥ =0, A’ outputs 1, otherwise outputs 0. There are two cases:

Case 1:r = ¢(g, g)° for some randond. In this case the probability df = b is
exactlyl. So we have’r[A’(g, 9%, g%, 97, e(g,9)°) = 1] = 3.

Case 2:r = e(g, g)*?7. In this case(g®, m - r) is a proper ciphertext fad and the
probability oft’ = bis the same aSucc?" (k). So we havePr[A' (g, g, g°, g7, e(g, g)*P7) =
1] = Succh ™ (k).

Since the DBDH problem is hard, we have

PriA(g,9%9% 97, ¢(9.9)*") = 1]=Pr[A'(9.9%,9", 97, e(9,9)°) = 1] < negl(k)
After substitution, the above in-equation beconsesc’ "' (k) — 3 < negl(k) and
henceSucc ™ (k) < 3 + negl(k).

5.3 Security Against the Proxy

Our scheme is also semantically secure against the prowyi@far). This notion is
captured byGame, which differs fromGame, only in the game setup step. Game;,
the challenger also gives a set of re-encryption keys todkeraary.

Theorem 2. The proxy encryption scheme is semantically secure against the proxy i.e.
for all PPT adversaries A, there exists a negligible function negl such that:

Pr(Succ™ (k)] < = + negl(k)

N | —

Proof. The proof here is very similar to the proof of Theorem 1 extlegatin theGame
Setupstep,A’ needs to generate a set of proxy keys and send theinTo generate a
re-encryptkeyk, ., A’ chooses:, n’ randomly fromZ, and setk,—;, = (h};, 9™ ).



Note that this re-encryption key is not correctly formed, ibbhas the same distribution
as a correctly formed re-encryption key. Therefdreannot distinguish this simulation
from a real-world attack in which all values have the corfeain. In other words, the
view of A is indistinguishable from a real-world attack. The reshef proof is the same
as the previous proof.

6 Implementation and Evaluation

6.1 Implementation

Client Side ! Server Side
i

—~O

User Config

-~

Location Data

Location
Update
Service

User >

Server
Interface

Pre-computing
Service

Fig. 4. The architecture of the Prototype Application

We implemented Longitude in Java for testing and evalugiimposes. The archi-
tecture of a small application and location sharing serugiag Longitude is as shown
in Figure 4.

The client side has three components: (1) a user interfagehvpinovides the basic
functionality for displaying user locations visually andrforming management and
configuration tasks; (2) a location update service whicls iorthe background to sense
user location, encrypt it and send it to the server on scleedB) a pre-computing
service which runs in the background only when external pdwas been connected to
the device (see Section 6.2). The client side runs on theddagitatform [24].

The server side has persistent data storage for locatiaredat user configurations
including re-encryption keys, precision masks and timgebzolicies. A daemon runs
on the server and receives updates and request from clien# run on any system
with Java 1.1 or above.

We did not find any cryptographic library in Java which suppdiilinear pairing,
so we implemented our own pairing libraryThe algorithm implemented for pairing
computation was the BKLS algorithm in Jabobian coordinatedescribed in [25]. We
built all the underlying algebraic structures such as fifiétlels and elliptic curves using
the Biglnteger class in standard Java. We used the AES ingpitation provided by
SunJCE.

The security parameters are taken from [26]. Nam@&lyjs an orderg subgroup of
a non-supersingular elliptic curve over a finite fiélg, whereg is a 160-bit prime and
p is a 512-bit prime G is a subgroup of the finite field,.. The overall security of

L Jpair:ht t p: / / sour cef or ge. net/ proj ects/jpair/



this setting is roughly equivalent to 1024-bit RSA. We usdfiSAOFB [27, 28] as the
stream cipher. A key length of 128-bit was used.

6.2 Optimisation

Performance is an important issue for mobile applicatidnsenable location sharing
service, users need to run a client-side application usiagptotocol on their mobile
device. The application typically needs to be run in the lgasknd to collect and update
location data periodically. If the application consumes nauch resource, it will slow
down the foreground applications and will drain the battery

Comparing to the location sharing services, the major perémce overhead using
Longitude comes from the cryptographic operations. To mise the performance im-
pact, Longitude is designed to distribute these operati@taeen the mobile device
and the server. To encrypt the location, 2 operations ardateen the mobile device:
encryption of the location using the stream cipher and gty of the random key
using theEncrypt function of the proxy encryption scheme. To decrypt locatd
phertext, 2 operations are needed on the mobile deviceyjpligmn of the random key
using theDecrypt function and decryption of the location ciphertext using stream
cipher. Stream ciphers are usually very efficient [29] arartimpact on performance
is negligible. Although the proxy re-encryption schemeuiegg bilinear pairing oper-
ations which are computationally expensive, these omeraitare done on the server.
The Encrypt and Decrypt functions which are performed on the user's mobile de-
vice require only group exponentiations and group muttations. More precisely, the
Encrypt function requires only 1 exponentiation in groGf, 1 exponentiation and 1
multiplication in groupGs. TheDecrypt function requires only 1 exponentiation and 1
multiplication in groupGs.

The Encrypt function is optimised further using the offline/online ctggraphy
paradigm [30, 31]. The ciphertext produced by the functimithe form of(g", m -
ZT=) wherem is the location plaintexty andZ,, are components in the public key and
rq iS @ random integer. The function can be naturally divided two phases: a pre-
computing (offline) phase and a final-encryption (onlineagd The pre-computing
phase can be performed when the mobile device is being atharmy®no foreground
application is running. In this phase multigl¢’=, Z"«) pairs are computed and stored.
In the final-encryption phase when the application needemd & location update to
the server, a pair which is pre-computed in the pre-compuihmnase is retrieved from
local data storage and a multiplication is performed to ragde the final ciphertext
(9", m - Z+). The used pair is then erased from the device. In this way \wesica
nificantly improve the performance and reduce the energgwopition at the cost of
some additional storage space, as we will see in Sectioren6.8.4.

6.3 Performance Evaluation

The performance overhead of Longitude mainly comes froncthiptographic oper-
ations. Here we present our performance evaluation of thigggographic operations
in terms of execution time. All the numbers are the average in milisecond for 10
executions.



Operation Time (ms)|Energy (mJ)
User Key Pair Generation 1693 945
Re-encryption Key Generation 1160 635
Public Key Encryption: Pre-computing Phase 427 245
Public Key Encryption: Final-encryption Phase 0.3 0.2
Stream Cipher Encryption 0.6 0.2
Public Key Decryption 32 105
Stream Cipher Decryption 1 0.7
Strong Revocation: User Key Update 94 14.6
Strong Revocation: Re-encryption Key Update 697 395

Table 1. Speed & energy consumption of Cryptographic operations exulsl One Phone

The results of the client side tests are summarised in Tabl&d client runs on a
Nexus One phone which has a 1GHZ Qualcomm QSD8250 CPU and BI2RAM.
From the table we see that the most time-consuming operiatibe user key pair gen-
eration operation, which takes about 1.7 seconds. Thiddnotbe a problem because
the user only runs it once when starting to use the serviceaila@ly, the other key gen-
eration and key update operations are slow but run only cmtaly. The frequently
used operations are encryption and decryption . The strgamercencryption and de-
cryption are very fast and can be done in 0.6 and 1 millisecesplectively. The public
key decryption operation is much faster comparing to thdipldey encryption oper-
ation. As we can see, the optimisation we mentioned in se@&i@ can improve the
performance significantly. The final-encryption phase tsexely fast, less than 1 ms.

The only cryptographic operation that runs at the serviogiger is the re-encryption
operation. We measured this on a MacBook Pro laptop with & @ore2 Duo 2.5
GHZ CPU and 4 GB RAM. The operation takes 42 milliseconds.

6.4 Energy Consumption

We also measured the energy consumption of the client sigeagraphic operations
on the Nexus One. The measurement was done using Power3@tof he results are
shown in Table 1 and given in Millijoules.

The capacity of the standard battery of Nexus One (1400mAtV)3is 18648
Joules. Therefore, 1000 full encryptions (including the-pomputing, the final-encryption
and the stream encryption operations) will consume ab@gdt of the battery energy. If
the pre-computing is done beforehand, then only the finahygrion and the stream en-
cryption operations are needed for real-time encryptioihis case, 1000 encryptions
will consume only0.002% of the battery energy. The space overhead of storing 1000
precomputed values is about 200 KB. For decryption, 100@ygéions (including the
public key decryption and the the stream decryption opemtvill consume).06% of
the battery energy.

An interesting question is how long can 1000 pre-computéaegalast? Will they
run out before the next recharge? In most cases, no. Apparérg more frequently



the phone updates its location, the faster the stored valilebe exhausted. How-
ever, GPS and wireless radio are energy consuming. Theréfa more frequently the
phone updates its location, the shorter the battery lifEds.a heavy user who updates
his location every minute, the battery usually lasts less th day. While 1000 pre-
computed values last 16.7 hours in this case. If the updatgiéncy is 10 minutes, then
the battery will last 2-3 days while 1000 pre-computed valwél last about 7 days.

6.5 Communication Overhead

The location ciphertexts produced by the stream cipher Hawvesame length as the
location plaintexts. Therefore the communication ovedhaames from the encrypted
random stream cipher key. The ciphertext of a encrypted kegists of an elliptic

curve point and an element in the fielg-. In our setting where is 512-bits, the size

of the ciphertext is about 1500 bits after point compres§3@h. Further optimisation

is possible by choosing elliptic curves with a larger emhegldlegree and by using
compressed pairings [34].

6.6 Security Evaluation

In Section 5 we proved that Longitude’s proxy re-encrypii®isemantically secure,
which means that an adversary cannot get any informationtabe user’s location by
directly examining the ciphertext. However, there areedtpessible indirect attacks.

Since location data is sent through the Internet, an adwersay be able to infer
the user’s location given the user’s IP address. Fortupdtes attack only allows the
adversary to get an imprecise location, usually to the lefieity or organisation. In
addition, most mobile operators provide only a NATed Ingraccess, which means
that an adversary will only see the gateway’s IP addressiths®ven harder for the
adversary to infer the user’s location. Therefore, in Laundg we did not implement
any IP obfuscation mechanism. If needed, an external sesvich as Tor [35] could be
used to provide anonymised communication.

If a query for a user’s location is followed by a location-bdsjuery to another ser-
vice provider, for example, a map-service, like Google Malpen it's possible for the
location sharing service to collude with the other servicedrrelate the two requests
to discover a user’s location. To counter this attack, thaiegtion would need to use
offline data or perform requests to sevexatably random locations.

Although precision masks allow users to be imprecise abmit tocation, they
do not prevent a recipient or intelligent software from mifggy a more precise location,
for example, by using background knowledge (user’s homekmace, favourite shops,
previous locations). Depending on the circumstances andhtbnt of the user, Longi-
tude mobile applications could generate precision masks mtelligently using viable
but incorrect locations. However, even with cleverer cahoent it's always possible
that a recipient will learn the user’s exact location andhtfigor wrongly infer that the
user is deliberately concealing their exact location frbemt, leading to a loss of trust
and perhaps the recipient reciprocating or taking some ettteon.



7 Conclusion and Future Work

In this paper, we presented a new privacy preserving locadi@ring protocol called
Longitude. The most significant features of Longitude aw the location sharing
provider only processes encrypted locations that it un@bdiecrypt, supports different
granularities of locations for different receivers, and key management, computation
and communication overheads. In addition, Longitude'sxpne-encryption scheme
is provably secure and the cryptographic functions opthior mobile platforms. A
prototype was implemented in Java on the Nexus One Androlglenphone and the
CPU-time and energy consumption were evaluated.

One type of privacy policy which has proven to be useful iratimn sharing services
are selective location-based policies. For example, Atieg, when at home, only want
her families to be able to track her but not her friends. Tyygtof policy can be easily
implemented if the location sharing service provider haeas to the user’s location.
But how could we support this type of policy is the providetyoholds encrypted
data? We plan to investigate this problem further, lookirgchemes such as searchable
encrypted data [22] and attributed-based encryption [@8]would also like to explore
how to provide more services upon encrypted data, as sughesf37].
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