Picture of offices in the City of London

Open Access research that is better understanding work in the global economy...

Strathprints makes available scholarly Open Access content by researchers in the Department of Work, Employment & Organisation based within Strathclyde Business School.

Better understanding the nature of work and labour within the globalised political economy is a focus of the 'Work, Labour & Globalisation Research Group'. This involves researching the effects of new forms of labour, its transnational character and the gendered aspects of contemporary migration. A Scottish perspective is provided by the Scottish Centre for Employment Research (SCER). But the research specialisms of the Department of Work, Employment & Organisation go beyond this to also include front-line service work, leadership, the implications of new technologies at work, regulation of employment relations and workplace innovation.

Explore the Open Access research of the Department of Work, Employment & Organisation. Or explore all of Strathclyde's Open Access research...

An automated parallel crystallisation search for predicted crystal structures and packing motifs of carbamazepine

Florence, Alastair J. and Johnston, Andrea and Price, Sarah L. and Nowell, Harriott and Kennedy, Alan R. and Shankland, Norman (2006) An automated parallel crystallisation search for predicted crystal structures and packing motifs of carbamazepine. Journal of Pharmaceutical Sciences, 95 (9). pp. 1918-1930. ISSN 0022-3549

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

An automated parallel crystallisation search for physical forms of carbamazepine, covering 66 solvents and five crystallisation protocols, identified three anhydrous polymorphs (forms I-III), one hydrate and eight organic solvates, including the single-crystal structures of three previously unreported solvates (N,N-dimethylformamide (1:1); hemi-furfural; hemi-1,4-dioxane). Correlation of physical form outcome with the crystallisation conditions demonstrated that the solvent adopts a relatively nonspecific role in determining which polymorph is obtained, and that the previously reported effect of a polymer template facilitating the formation of form IV could not be reproduced by solvent crystallisation alone. In the accompanying computational search, approximately half of the energetically feasible predicted crystal structures exhibit the C=(OH)-H-...-N R-2(2)(8)dimer motif that is observed in the known polymorphs, with the most stable correctly corresponding to form III. Most of the other energetically feasible structures, including the global minimum, have a C=(OH)-H-...-N C(4) chain hydrogen bond motif. No such chain structures were observed in this or any other previously published work, suggesting that kinetic, rather than thermodynamic, factors determine which of the energetically feasible crystal structures are observed experimentally, with the kinetics apparently favouring nucleation of crystal structures based on the CBZ-CBZ R-2(2)(8) motif. (c) 2006 Wiley-Liss, Inc.