Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

An automated parallel crystallisation search for predicted crystal structures and packing motifs of carbamazepine

Florence, Alastair J. and Johnston, Andrea and Price, Sarah L. and Nowell, Harriott and Kennedy, Alan R. and Shankland, Norman (2006) An automated parallel crystallisation search for predicted crystal structures and packing motifs of carbamazepine. Journal of Pharmaceutical Sciences, 95 (9). pp. 1918-1930. ISSN 0022-3549

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

An automated parallel crystallisation search for physical forms of carbamazepine, covering 66 solvents and five crystallisation protocols, identified three anhydrous polymorphs (forms I-III), one hydrate and eight organic solvates, including the single-crystal structures of three previously unreported solvates (N,N-dimethylformamide (1:1); hemi-furfural; hemi-1,4-dioxane). Correlation of physical form outcome with the crystallisation conditions demonstrated that the solvent adopts a relatively nonspecific role in determining which polymorph is obtained, and that the previously reported effect of a polymer template facilitating the formation of form IV could not be reproduced by solvent crystallisation alone. In the accompanying computational search, approximately half of the energetically feasible predicted crystal structures exhibit the C=(OH)-H-...-N R-2(2)(8)dimer motif that is observed in the known polymorphs, with the most stable correctly corresponding to form III. Most of the other energetically feasible structures, including the global minimum, have a C=(OH)-H-...-N C(4) chain hydrogen bond motif. No such chain structures were observed in this or any other previously published work, suggesting that kinetic, rather than thermodynamic, factors determine which of the energetically feasible crystal structures are observed experimentally, with the kinetics apparently favouring nucleation of crystal structures based on the CBZ-CBZ R-2(2)(8) motif. (c) 2006 Wiley-Liss, Inc.