Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Inhibition of nitric oxide production exacerbates chronic ocular toxoplasmosis

Roberts, F and Roberts, C W and Ferguson, D J and McLeod, R (2000) Inhibition of nitric oxide production exacerbates chronic ocular toxoplasmosis. Parasite Immunology, 22 (1). pp. 1-5. ISSN 0141-9838

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

There is considerable controversy as to the roles of parasite proliferation and the inflammatory response in destruction of the retina during Toxoplasma gondii infection. A murine model was used to investigate the role of nitric oxide in pathogenesis of chronic ocular toxoplasmosis. Increased quantities of messenger RNA (mRNA) transcripts for iNOS were detected in the eyes of chronically infected C57BL/6 mice compared with noninfected control mice. Inhibition of nitric oxide (NO) by the addition of Lomega-nitro-L-arginine methyl ester (L-NAME) to the drinking water of infected mice between weeks 4-6 of infection, exacerbated ocular inflammation. The amount of inflammation was assessed semiquantitatively in histological sections of the eye. Eyes from L-NAME treated mice showed a significant increase in inflammation of the retina (P = 0.02), choroid (P = 0.03), and vitreous (P = 0.02) compared with control mice. These results demonstrate a protective role for NO in the control of chronic, ocular toxoplasmosis.