Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

Electrochemiluminescence (ECL) sensing properties of water soluble core-shell CdSe/ZnS quantum dots/Nafion composite films

Dennany, Lynn and Gerlach, Matthias and O'Carroll, Shane and Keyes, Tia E. and Forster, Robert J. and Bertoncello, Paolo (2011) Electrochemiluminescence (ECL) sensing properties of water soluble core-shell CdSe/ZnS quantum dots/Nafion composite films. Journal of Materials Chemistry, 21 (36). pp. 13984-13990. ISSN 0959-9428

[img]
Preview
PDF
c1jm12183a.pdf
Final Published Version

Download (456kB) | Preview

Abstract

Water soluble positively charged 2-(dimethylamino) ethanethiol (DAET)-protected core-shell CdSe/ZnS quantum dots (QDs) were synthesized and incorporated within negatively charged Nafion polymer films. The water soluble QDs were characterized using UV-visible and fluorescence spectroscopies. Nafion/QDs composite films were deposited on glassy carbon electrodes and characterized using cyclic voltammetry. The electrochemiluminescence (ECL) using hydrogen peroxide as co-reactant was enhanced for Nafion/QDs composite films compared to films of the bare QDs. Significantly, no ECL was observed for Nafion/QDs composite films when peroxydisulfate was used as the co-reactant, suggesting that the permselective properties of the Nafion effectively exclude the co-reactant. The ECL quenching by glutathione depends linearly on its concentration when hydrogen peroxide is used as the co-reactant, opening up the possibility to use Nafion/QDs composite films for various electroanalytical applications.