Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Complex formation between transition metal ions and salicylglycine, a metabolite of aspirin

GONZALEZ, E B and DAEID, N N and NOLAN, K B (1994) Complex formation between transition metal ions and salicylglycine, a metabolite of aspirin. Polyhedron, 13 (10). pp. 1495-1499. ISSN 0277-5387

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Ionization constants and complex formation constants of salicylglycine (1) in aqueous solution at 25-degrees-C and ionic strength 0.2 mol dm-3 KCl have been determined. The pK(a) values for the ligand are 3.44(1) and 8.24(4) and H-1 NMR studies show that there is no further ionization at higher pH as was previously suggested. In the case of copper(II) there is no evidence for complex formation below pH 4 and the main species in solution at pH>5 according to pH-metric and UV-vis spectrophotometric evidence in MLH-1 in which the ligand is bonded to the metal through the phenolate and carboxylate oxygen atoms and the deprotonated peptide nitrogen. The species ML also exists albeit in low concentrations. At pH>10 the formation of MLH-2 resulting from ionization of an equatorial aquo ligand is observed. In the case of nickel(II) and zinc(II) no complex formation occurs below pH 6 but above this pH the species ML and MLH-1, the latter involving deprotonation of an aquo ligand, are observed although at pH > ca 8 in the case of nickel(II) and pH > approximately 7.5 in the case of zinc(II) precipitation occurs.