Classification of ordered texture images using regression modelling and granulometric features

Khatun, Mahmuda and Gray, Alison and Marshall, Stephen (2011) Classification of ordered texture images using regression modelling and granulometric features. In: Irish Machine Vision and Image Processing Conference, 2011-09-08 - 2011-09-09. (https://doi.org/10.1109/imvip.2011.20)

[thumbnail of imvip_ieee_5.pdf]
Preview
PDF. Filename: imvip_ieee_5.pdf
Final Published Version

Download (205kB)| Preview

Abstract

Structural information available from the granulometry of an image has been used widely in image texture analysis and classification. In this paper we present a method for classifying texture images which follow an intrinsic ordering of textures, using polynomial regression to express granulometric moments as a function of class label. Separate models are built for each individual moment and combined for back-prediction of the class label of a new image. The methodology was developed on synthetic images of evolving textures and tested using real images of 8 different grades of cut-tear-curl black tea leaves. For comparison, grey level co-occurrence (GLCM) based features were also computed, and both feature types were used in a range of classifiers including the regression approach. Experimental results demonstrate the superiority of the granulometric moments over GLCM-based features for classifying these tea images.