Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Validation of dual energy x-ray absorbtiometry and foot-foot impedance against deutrium dilution measures of aftness in children

Reilly, John J and Garasimidis, K and Papararcleous, N and Sherriff, A. and Carmichael, A. and Ness, AR and Wells, J.C. (2010) Validation of dual energy x-ray absorbtiometry and foot-foot impedance against deutrium dilution measures of aftness in children. International Journal of Pediatric Obesity, 5 (1). pp. 111-115. ISSN 1747-7166

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

To determine the validity of estimation of body fatness by dual-energy x-ray absorptiometry (DXA) and foot-foot bio-electrical impedance (BIA). In 176, 11-12-year-olds (84 boys; 92 girls) body fatness was measured using total body water (TBW), derived from deuterium oxide dilution space. Body fatness was also estimated from DXA and BIA. Methods were compared by regression and by Bland-Altman analysis using TBW measures as the reference. In boys, mean fat mass from TBW was 9.8 kg (standard deviation, SD=6.1); bias by DXA estimated fat mass was +0.9 kg (limits of agreement -2.2 to +4.1) and bias for BIA was -5.2 kg (limits of agreement +0.5 to -10.8). In boys, regression analysis indicated significant differences in slope (p<0.001) for DXA, and both slope (p < 0.001) and intercept (p < 0.001) for BIA. In girls, mean fat mass from TBW was 12.1 kg (SD 7.7); bias for DXA was +1.2 kg (limits of agreement -1.9 to +5.1) and bias for BIA was -0.2 kg (limits of agreement -5.4 to +5.1). In girls, regression analysis indicated significant differences for slope and intercept (p<0.001 in all cases) for both DXA and BIA. Errors in estimation of fat mass using BIA and DXA can be very large, and the direction of error can differ between the sexes.