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Abstract—In electrical power engineering, reinforcement learn-
ing algorithms can be used to model the strategies of electity
market participants. However, traditional value function based
reinforcement learning algorithms suffer from convergene issues
when used with value function approximators. Function appox-
imation is required in this domain to capture the characteristics
of the complex and continuous multivariate problem space. fie
contribution of this paper is the comparison of policy gradient
reinforcement learning methods, using artificial neural neéworks
for policy function approximation, with traditional value function
based methods in simulations of electricity trade. The metbds
are compared using an AC optimal power flow based power
exchange auction market model and a reference electric powe
system model.

Index Terms—Artificial intelligence, game theory, gradient
methods, learning control systems, neural network applicéons,
power system economics.

I. INTRODUCTION

must utilise voluminous multi-dimensional data to their ad
vantage. Data may be noisy, sparse, corrupt, have a degree
of uncertainty (e.g. demand forecasts) or be hidden from
the participant (e.g. competitor bids). Reinforcementriga
algorithms must also be capable of operating with data af thi
kind if they are to successfully model participant stragasgi

Traditional reinforcement learning algorithms attempt to
learn a function that returns the long-term expected reward
of each action available in a given state. Generalisatioh-te
nigues can be used to approximate thaue functionand
allow continuous mutli-variate state and action spaceseto b
used. However, it has been found that the greedy updates
used with most techniques can prevent these algorithms from
generalising even in simple problems [3]-[5].

Policy gradient algorithms are an alternative form of rein-
forcement learning method that do not learn a value fungtion
but adjust an agent’s policy directly [6]. They can be used
with function approximation techniques without sufferfingm

ITH growing world population comes increasing dethe problems that mar value function based methods. They
mand for energy and with it, demand for the fuel§ave been successfully applied in several types of opeitio

used to generate electricity. Competitive markets have

g@tting, including robotic control [7], financial trading][ [9]

important role to play in the management of this demar&hd network routing [10], but they have not been previously
and the subsequent price paid for electricity by consume@®plied in simulations of competitive electricity trade.
Market designs for electricity are unique among commodity In this paper, two policy gradient algorithms are compared
markets and new architectures are expensive and riskyWish one value-function based method and two variants of the
implement. The importance of electricity to society makagopular Roth-Erev technique [11]. A power exchange auction
it impractical to experiment with radical changes to tradinmarket model is used to facilitate trade between learning
arrangements on real systems. As an alternative it is gessidgents and AC optimal power flow solutions are used to clear
to study abstract mathematical models of markets with setssstbmitted offers. The IEEE Reliability Test System progide
appropriate simplifying approximations and assumptiops areference electric power system model that provides dynami
plied. Market architecture characteristics and the camseces load profiles and a realistic generation mix with associated
of proposed changes can be established by simulating @®sts [12]. Learning agents are each endowed with roughly
models as digital computer programs. Competition betweéfuivalent portfolios of generating stock. The agents carkm
participants is fundamental to all markets, but the stiagegf up offer prices above marginal cost and withhold generating
human participants are a challenge to model mathematicalgapacity within specified limits. The algorithms are conggar
Unsupervised reinforcement learning algorithms from tHe their profitability over a simulated year of trade.
field of artificial intelligence can be used to represent sidap ~ The remainder of this paper is organised as follows: Sec-
behaviour in competing players [1] and have been shown to t#n Il provides an introduction to reinforcement learnigd
capable of learning highly complex strategies [2]. Indiats the algorithms under test. Related research is reviewed in
participating in an electricity market (be they represegti Section Ill. In Section IV the power exchange auction market

generating companies, load serving entities or firms oftrg)d Model and the design of a multi-learning-agent system is
defined. Details of the simulation setup are given in Secfon
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and the results are presented in Section VI. Discussion and
critical analysis of the results is provided in Section VII
before the conclusions and opportunities for further waek a
described in Section VIII.
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Il. REINFORCEMENTLEARNING are made to the parameter vectérof a policy function

Reinforcement learning is learning from reward by mar5’;gpproximator (co_nnection We?ghts in the case of an artificia
ping situations to actions when interacting with an unc'nartaneur"“‘I network) in the direction of steepest ascent of some

environment [13]. In the classical model of agent-envirenin policy performance measuié with respect to the parameters

interaction, at each time stepn a sequence of discrete time 0. — oY 3
stepst = 1,2,3... an agent receives as input some form of 41 = b F o‘a_gt ®)
the environment’s state, € S, whereS§ is the set of possible

. . . wherea is again a positive definite step size learning rate.
states. From a set of actioo&(s;) available to the agent in J . @ 1S 8g P : Step g
: 2" " Policy gradient methods are differentiated largely by #eht
states; the agent selects an actiap and performs it in its

. i . niques used to obtain an estimate of the gradiéfitod. Some
ig\;ltr'fi)rr:]rgi?; -;hn% ?r?;”;m(]e?tegciri]\}g;sazgggr?qtuéqgmelr?cgi]ge of the most successful real-world robotics results [7]] H&ve
Step gentr . . been yielded by likelihood ratio methods such as Williams’
r++1 € Rin part as a result of its action. The agent then adju

: . . : : INFORCE[20] and natural policy gradient methods, such as
its policy for selecting actions by learning from the StatFne Episodic Natural Actor-Critic (ENAC) [21]. For a coneis
representation;, the chosen action; and the reinforcement :

) L . . overview of these methods the interested reader is reféored
signalr;; before beginning its next interaction.

Traditional reinf t | i thod h (522]'

raditiona’ relniorcement learning metnods, such as - , relatively simple reinforcement learning method, pro-
learning [14] or Sarsa [15], attempt to learn an acuonealng
;

. osed by Alvin E. Roth and Ido Erev [11], has received
function Q(s;, a;) that returns the long term expected rewa . . .
Sy ! : . . onsiderable attention from the agent based electricitsketa
v, 7" for taking actiona, in states,. If a discrete number

of statesn. and actionss. are defined. these values ma bsimulation community. The algorithm is based on empirical
~Ts @ ' Y Ofesults obtained by observing how humans learn decision
stored in a look-up table of the form:

making strategies in games against multiple strategiceptay

al  a? a™e It learns a policy in which the state of the environment is
sl o1 b2 L L ignored and each actiom is associated with a single value
2 JER T : g that is the agent’s propensity for selecting it. After each

(1) interaction the propensity for the previous action, thathed
in the rewardr;, is adjusted by an experimentation parameter
e and all other action propensities are adjusted by a small
In Q-learning the values are updated after each interactiBfpPortion of their current value. _
according to the equation Two shortcomings of the original Roth-Erev algorithm were
identified in [23] and a modified formulation was proposed.
Q(st,ar) = Q(s¢, ar)+a[rep1+ymax Q(si41,a)—Q(s¢,a)]  Under this variant, after selecting actiahin interactiont the
‘ (2) propensity to select actiom for interactiont + 1 is:
where~ is a discount factor, witl) < v < 1 that prevents ) ; 1 o,
values from going unbounded and represents reduced trust ing, (; + 1) = (1-9)ga(t) +ri(l—¢), a=a
the rewardr; as discrete time increases. The learning rate (1-9)¢a(t) +4a(t)(55), a#d
where A is the total number of feasible actions amdis

a, where0 < « < 1, controls how much attention is paid to
new data when updating. ’igee recencyparameter. The recency, or forgetting parameter
grades the propensities for all actions and preventseprop

A balance between exploration of the environment al
exploitation of past experience must be struck when selgzctls-ty values from going unbounded. It is intended to represen
e tendency for players to forget older action choices and

actions. Thes-greedy approach to action selection is defin
to prioritise more recent experience. The experimentation

by a randomness parameterwhere0 < ¢ < 1, and a decay

_pa:jamete][d [16]'rﬁ ralmdtc_)m nhtfjmberr;hwhereo ﬁ Lr St_l parameter prevents the probability of choosing an actiomfr

IS drawn Tor each selection. 1, < ¢ then a random action going to zero and encourages exploration of the action space
This paper proposes a new stateful variant of the Roth-Erev

is selected, otherwise the perceived optimal action is efos
Atter each selection the randomness is attenuated. by method. Instead of assuming only one state and maintaining
one row of propensities, a multi-row table with one row

Enumerating high-dimensional state and action spaces
result in impractical memory requirements in all but thﬁer environment state, as with Q-learning, is used. Action
opensity values are still updated according to equatjdnut

pMsoMa

(4)

simplest of problems [1]. Function approximation techisju r
SUCh. as artificial neural r_letworks [17], can be used 1o ‘is the values in the row associated with the previous state
proximate the value function and allow these methods to

. . o . ) at are modified during the learning step. The method allows
applied to problems with multi-dimensional and continUOUgte rentiation between states, but can increase the nuofoe
environments [18]. However, it has been found that uPdat[ﬁFopensity values that requiré updating
from greedy action selections can cause methods using this '
technique to fail to generalise [3]—[5].

Policy gradient reinforcement learning methods learn a
policy functionthat returns an action given the current per- When agent based electricity market simulations first

ceived state of the environment [6]. Small incremental ¢fean emerged they were driven by heuristics based on domain

Ill. RELATED WORK
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expert knowledge and intuition, and were implemented asA nodal marginal pricing scheme is used in which the
basic trading rules [24]-[27]. Successive publicationsfithe price of each offer is cleared at the value of the Lagrangian
London Business School illustrate a trend in the field towardnultiplier on the power balance constraint for the bus atiwhi
more complex algorithms and improved behavioural modetise offer’'s generator is connected.
[28], [29].

More recently, unsupervised reinforcement learning algo-
rithms from the field of artificial intelligence have been diseB. Market Environments for Agents
in energy market research [30]. Variations on the Q-leaynin

. , Etach agent has a portfolio of, generators associated
technique have been used to study congestion manageme . : ) : .
with their local environment. Each environment is respbiesi

schemes [31], combined electricity and gas markets [32] aP . . : .

L . or (i) returning a vector representation of its currenttesta
emissions allowance trading [33]. The Roth-Erev method hasd (i) accepting an action vector which transforms the
been used to study market power [23], the Italian wholesazg 'rolrl1ment 'r?té) g ne stalte v wh
electricity market [34], cross-holdin§§35], and interrelation- VI _ ! W e _ )
ships between contracts markets and balancing markets [36]) Discrete Market EnvironmentFor agents using the
[37]. Q-learning or Roth-Erev methods, an environment with

Policy gradient reinforcement learning methods have ng'{screte states and, discrete action possibilities is defined.

. . .. i +
previously been used in agent-based electricity market rH1€ €nvironment produces a statg where s  Z* and
< s < ng, at each simulation step and accepts an action

search, but have been successfully applied in other Iadmyrat0 v
[6] and operational settings [7], [10]. In [8] and [9] a remt @ Wherea € ZT and0 < a < n,. To prevent state
gradient method was used to optimise financial investmetftac€ enumeration from exceeding memory limits the discret

performance without price forecasting and in [38] a modifiegfates are derived only from the current total system demand

version of REINFORCE is used to simulate a marketplace fofl = 2 ', Where Py is the vector of active power demand at
grid computing resources. each bus. Informally, the state spacenisstates between the

minimum and maximum demand and the current statés
IV. M ODELLING ELECTRICITY TRADE the index of the state to which the present demahdelates.

. . The action space for a discrete environment is defined by
In this paper a power exchange auction market model

: . - ) . < m; <

is used to provide an electricity trading environment fognv?\:;cr)rmélvg)esrte\?vitﬂ IZL;] ?mloo,ao\l:erét:cr)?ente\?heerrggrkgps
comparing reinforcement learning algorithms. It is based o 9 g, @ \ w, W =
the SmartMarket model that is provided with AVPOWER wi < 100, of percentage capacity withholds with length

JF
[39] and was developed for the PowerWeb project at Cornglpd a scalar number of offers,, vv_here o € Z7, tq be
University. Market participants are modelled using soﬁwaSme'tted for each generator associated with the envirahme

agents from PyBrain [40] that use reinforcement IearninEach offer relates to one price-quantity block, where theepr
gent y - . . : |g the marginal cost of the associated generator marked up by
algorithms to adjust their behaviour. Their interactiothathe o )
. . . . . . m; percent and the quantity is,/n., wherep, is the rated

market is coordinated in multi-agent simulations, thectrce : < " ! .
of which is derived from PvBrain’s sinale plaver desian Thoutput of the associated generator, with percent withheld.

: Y . gle player an. ?ncreasingno provides greater flexibility with regards to how
multi-agent system consists of discrete and continuoug&ehar o . ;

. . capacity is sold, allowing some capacity to be offered atna lo
environmentsspecifictasksfor agents andnodulesthat are

: . 2 ! . price, ensuring dispatch, and for the remainder to be marked
used for policy function approximation and storing statesm s ) :
: " up further, risking non-dispatch for the chance of greatefip
values or action propensities. _ _ i
2) Continuous Market Environmen€or agents operating
policy gradient learning algorithms a continuous enviremin
. . _ is defined. It outputs a state vectey wheres; € R, and
In each trading period the auction accepts offers to S@lfcepts an action vectar, wherea, € R. Scalar variables
blocks of capacity from participating agents. A doubleesid ;,,  andw, define the upper limit on the percentage markups
auction, in which bids to buy blocks of power may bgn marginal cost and the upper limit on the percentage of
submitted by agents associated with dispatchable loadfsas capacity that can be withheld, respectively. Agaip,defines
aVaila.bIe, but th|S feature iS not used. Va.||d Of‘ferS forlﬂeaqhe number Of Offers to be Submitted for each generator
generator are sorted into non-decreasing order with ré$pecsssociated with the environment.
price and converted into corresponding generator capaciti The state vector can be any set of variables from the power
and piecewise linear cost functions. The newly configuredsiem or market model, e.g. bus voltages, branch power,flows
units form a unit-decommitment optimal power flow problengenerator limit Lagrangian multipliers. Each element of th

[39], the solution to which provides generator set-poimél a,ector provides one input to the neural network used forcgoli
nodal marginal prices that are used to determine the prioports,nction approximation.

of each offer block that should be cleared and the associateq-he action vecton has length2n,n,. Elementa;, where
g'to- (2l

clearing price. The cleare(_j offers determine each ag§r6’5< a; < my, corresponds to the percentage price markup
revenue and hence the profit that is used as the reward mgg%ai“' where0 < a;,, < wy, to the percentage of capacity

. . oNth -
1Cross-holdings occur when one publicly traded firm ownsisio@nother 1O withhold for the(i/2)™ offer from the agent, where =
publicly traded firm. 0,2,4,...,2n4n,.

A. Power Exchange Auction Market
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C. Agent Tasks associated with selecting actian at simulation step. For
To allow alternative goals (such a profit maximisation o* standard Roth-Erev learner, the table has one row thasstor

meeting some target level for plant utilisation) to be aited the propensity for selection of each action. _
with a single type of environment, an agent does not interact’ "€ module for policy gradient methods is a multi-layer
directly with the environment, but through a particutask feed-forward artlflc_lal neural netw_ork that outputs a vecto
[40]. Using some measure of risk adjusted return (as in [gjh€n presented with an observation vector
might be of interest in the context of simulated electritigde ~ 'he learner can be any reinforcement learning algorithm
and this would simply involve the definition of a new task anéat modifies the values/propensities/parameters of trdutao
would not require any modification of the environment. to increase expected future reward. The dataset stores stat
A task defines the reward returned to the agent and th@lion-reward triples for each interaction between thenage
defines the agent's purpose. For all simulations in this papgnd its environment. The stored history is used by learners
the goal of each agent is to maximise direct financial profi¥hen computing updates to the module.
Rewards are defined as the sum of earnings from the previou§ach learner is associated with an explorer that adds a de-
periodt, as determined by the difference between the reven@kee of exploration to the agents action selection by rétgrn
from cleared offers and generator margina| costs at thm‘ toan explorative aCtiOI&e When aCtiVated W|th the current state
cleared quantity. s and actiona from the module. Softmax anegreedy [13]

Given a task, an agent may have a restricted view of t&plorers are implemented for discrete action spacescyPoli
environment or be able to only perform certain actions. Th@adient methods use an additional module that adds Gaussia
a task adjusts the state vector before it is passed to fHse to the output of the neural network. The explorer has
agent and makes adjustments to the action vector before ififarameter that relates to the standard deviation of the
passed to the environment. Agents operating policy-gradi€>aussian distribution.
learning methods approximate their policy functions using
artificial neural networks that are presented with inputteec V. |IEEE RELIABILITY TESTSYSTEM SIMULATION

x of length n, wherez; € R. The state vector from the . hod db . h
environment may consist of values that differ greatly inithe .Learnlng methods are compared by repeating the same

relative magnitude. To ensure that all values have a simiI%{ana;ioT of_c;lompetit(;vle; elictricity tra_de and SWit(frhring?EEE
influence on the agent's policy, the task produces a norewhlisYP€ ©' ~algorithm used by the competing agents. The ;
vector, with—1 < ; < 1, for input to the policy function Reliability Test System (RTS) provides a reference electri

approximator. To accomplish this, vectors of lower and mppBOWer sys_tern model, _hourly Iogd profiles for a who_le year
sensor limits are defined; and s,, respectively, and used tOand a realistic generation mix with costs. Each agent intera
calculate the normalised input vector with the market once for each hour of the simulated year,

submitting offers for each of the generators in its portfoli
=9 ( 5 — 5 ) 1 ) and this is then repeated for each of the learning algorithms
' The model has 24 bus locations that are connected by 32
To produce an output vectaj, where —1 < y; < 1, transmission Iines,_ 4 transformers and 2 underground sable
nodes that implement a hyperbolic tangent activation fonct The transformers tie together a 230kV area and a 138kV area.

are used in the output layer of the artificial neural netword N€ original model has 32 generators of 9 different typeh wit

Outputs in this range can be denormalized to provide valres £ total capacity of 3.45GW. To reduce the size of the discrete

markup and capacity withhold that are valid for the assediat2ction domain, five 12MW and four 20MW generators are
removed. This is a minor alteration as their combined capaci

generator if vectors of lower and upper action limits,and

a,, respectively, are defined. The output and the limit vectol® ONly 4.1% of the original total generation capacity and
are combined to produce an action vector the remaining capacity is still sufficient to meet demand. To

further reduce action space sizes all generators of the same
o= (y_ﬂ) (au — a)) + ay (6) type at the same bus are aggregated into one unit. This may
2 be considered to be the representation of each individwe¢épo

where 0 < a; < my and 0 < a1 < w, for i = station in the market, rather than gach synchronous machine
0,2,4,...,2nm,. The model has_loads at 17 locations a_n(_JI the total demand
' at system peak is 2.85GW. The connectivity of branches and

o the location of generators and loads is illustrated in Fig. 1

D. Participant Agents This model was selected because it is well established in

Each agent is defined as an entity capable of producing tive electrical engineering research community, it cagture
actiona based on previous observations of its environmentimportant aspects of a real transmission system (such as
and is associated with module a learner, a datasetand an topology and plant ratings) and it is suitably sized for pd
explorer. simulation.

The module is used to determine the agent's policy for Generator marginal costs are quadratic functions, of the
action selection and returns an action veetavhen activated form c(p;) = ap? + bp; +c wherep; is the output of generator
with observations. For Q-learning the module is @, x n, i. The parameters, b and ¢ for each generator type are
table where each element*“* is the value in states; given in Table I. Generator cost function coefficients were

Su — S
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GENERATOR TYPES AND COST PARAMETERS FOR THE SIMPLIFIEEEEE
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Single line diagram for the simplified IEEE ReliatyiliTest System.

Code a b c Type
U50 0.0 0.001 0.001 Hydro
u76 0.01414 | 16.0811 | 212.308 Coal
U100 | 0.05267 | 43.6615 | 781.521 oil
U155 | 0.00834 | 12.3883 | 382.239 Coal
U197 | 0.00717 | 48.5804 | 832.758 oil
U350 | 0.00490 11.8495 | 665.109 Coal
U400 | 0.00021 4.4231 395.375 Nuclear
TABLE 1l

PORTFOLIOS OF GENERATING PLANT ENDOWED TO EACH AGENT

Agent us0 uU76 | U100 | U155 | U197 | U350 U400
Hydro | Coal oil Coal Oil Coal | Nuclear
1 2x 1x 1x
2 2% 1x 1x
3 6x 3x
4 3x 2% 1x

of generators of each type in each portfolio. The portfolios
were chosen such that each agent has: a mix of base load
and peaking plant, approximately the same total generation
capacity, generators in different areas of the network and
enough generators to produce a challenging action domain.
The generator labels in Fig. 1 denote the associated ageat. T
synchronous condenser is associated with a passive agent th
always offers 0 MW at 0 $/MWh (the unit can be dispatched
to provide or absorb reactive power within its limits).

Markups on marginal cost are restricted to a maximum of
30% and discrete markups of 0, 15% or 30% are defined for
value function based methods. Up to 20% of the total capacity
of each generator can be withheld and discrete withholds of
0 or 20% are defined. These values were chosen so as to be
similar with those used in [30] to allow the same findings to
be reproduced and for existing research to be built uporerFin
discrete action definitions would allow agents to competeamo
closely to the margins of dispatch, but would greatly inseea
the size of the action space. However, initially only oneepff
per generator is required, but this is increased to two irword
to explore the effect of increased state space size and offer
flexibility.

The environment state for all algorithm tests is derivedrfro
a forecast of the total system demand for the next one hour
period. The system demand follows the hourly profile from the
RTS which varies according to the day of the week and the
time of year. For tests of value function based methods aad th
Stateful Roth-Erev learning algorithm, the continuousesta
divided into 3 equally sized discrete states between mimmu
and maximum demand that allow differentiation between low,
medium and peak load.

To investigate exploitation of constraints, AC optimal pow
flow is used and the state vector for agents using policy gra-
dient methods is optionally enhanced to combine the demand
forecast with voltage constraint Lagrangian multipliefsath
generator buses and the voltage magnitude at all other .buses
Lagrangian multipliers are used as the voltage at generator
buses is typically fixed and the multipliers indicate if the
constraint is binding. Branch flows are not included in tlagest
vector as the flow limits in the RTS are high and are typically
not reached at peak demand. Generator capacity limits are
binding in most states of the RTS, but the output of other
generators is deemed to be hidden from an agent.

Typical parameter values, either defaults from PyBrain or
inspired by the literature, are used for each of the algorith
Learning rates are set low and exploration parameters decay
slowly due to the length and complexity of each simulation.
By decaying exploration parameters to a suitably low level,
all algorithms converge to a stable policy by the end of the
simulated year. No attempt to study parameter sensitifity i

taken from an RTS model by Georgia Tech Power Systeramdertaken, but Q-learning is typically robust to paramete
Control and Automation Laboratorythat assumes Coal costsanges in simulations of this type [31]. For Q-learning
of 1.5 $/MBt?, Oil costs of 5.5 $/MBtu and Uranium costsa = 0.2, v = 0.99 and e-greedy action selection is used with
of 0.46 $/MBtu.

The generating stock is divided into 4 portfolios that ar¢ = 0.3 and Boltzmann action selection [13] is used with
each endowed to a learning agent. Table Il shows the numbet 100 andd = 0.999.

21 Btu (British thermal unit 1055 Joules

e = 0.9 andd = 0.999. For Roth-Erev learning = 0.55,

Two-layer neural networks with linear input and output
nodes, no bias nodes and randomised initial connection
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y y g OX 10% é\genGt 4 (Sdemlgndlgud s %/%ltz}gse) 20 22
M oo ] & ' T T T T
VI. RESULTS 1.6 flm m REINFORCE 0 M 9 N
. 4 Hv v ENAC ) 8 ° .
To compare algorithms, the average reward for each hour ~ 1;‘ . Yoo Vo
of the day over one simulated year is calculated for agents - Lol " "dnn aa. s |
1 and 4 and plotted. Results for only agents 1 and 4 are os L . .- ]
given as agents 1 and 2 have identical portfolios and agent “ | i - s
) . . . Y A
3's portfolio consists mostly of Hydro plant with zero cost. irEBgmnd "
|

When the marginal cost of a generator is zero, regardless of oo l—L L 1 1 1 1 1 1 1 |
the percentage markup chosen, the offer price is always zero R e
This is a limitation of marking up prices based on a percentag
of marginal cost, rather than by a fixed price value and resuf;
in passive market behaviour from agent 3 under all algorsthm
Fig. 2 compares the Modified Roth-Erev method [23] with
the Stateful Roth-Erev method. The plots show average re-

wards for agents 1 and 4 when using Q-learning and the tV\\/IE))Itage profile data to define its state, but results usinglgur
Roth-Erev variants.

Fig. 3 and Fig. 4 compare policy gradient methods wh the system demand are shown in all of the plots in Fig. 3 and

submitting one offer per generator under two differentestaEF'g' 4 for comparison.

vector configurations. Fig. 3 concerns agent 1 and showsFig. 5 shows average rewards for agents 1 and 4 using Q-
the average reward received for a state vector consistiiegrning and ENAC withtwo offers required per generator.
solely of the demand forecast and for a combined demamte continuous environment used by with the ENAC method
forecast and bus voltage profile state vector. Fig. 4 shovgspresented with the same enhanced state vector that moéduc
average rewards for agent 4 under the same configuratioth& results in Fig. 3 and Fig. 4 under the one offer per geoerat
The discrete environment used by Q-learning does not use tase.

Average rewards for agent 4 under two state configunst
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L, Xt Agent 1 structure to any advantage.

19 O O Q-Learning| o ®ol I CI) o ’ o I I

4 o i

Ly | ERAC O"'Svsov"'o | VIIl. CONCLUSION

f 0.8 |- v v vOo - Policy gradient methods are found to be a valid option

g o6l v - for modelling the strategies of electricity market papants.

Q . .

& o4l | However, in this paper they have been outperformed by a
02 | 0 i traditional action-value function algorithm in all of thérs
ool®eeee v ooy ulations. No evidence has been found to suggest that policy

0 2 4 6 8 10 12 14 16 18 20 22 gradient methods can exploit complex constraints in a power
10t Agent 4 system model. However, they have been shown to improve
L6 == e R S B B R S R in performance when operating with a richer state vectar tha
-L.earnin, . . . .
LN, mnae Elo oo 0% ° 7 includes bus voltage level and voltage constraint inforomat
|- [e] — . . . .

a2 °© v ., oyvy ° Some limitations of the standard Roth-Erev method in an

- 1.0 | — . . .

T osl Y "y "o ] dynamic environment have been found and an alternative

: 0‘6 | v M configuration that rectifies the issues has been demortstrate

. v o . . . .

= ol | Q-learning was able to produce an effective policy in all
02Poo 00 N v simulations, including one involving a relatively largetian
oolYY¥Yyw o+ 0 1 space that saw degraded performance from a policy gradient

0 2 4 6 8 10 12 14 16 18 20 22 method
Hour t i . .
AC optimal power flow adds enormously to simulation times
Fig. 5. Average rewards for two offers per generator. when analysing an entire year of hourly trading interaction

The addition of bus voltage data to the state vector improved
the performance of the policy gradient methods, but it hds no
been show if the same could not be achieved by perhaps using

Agents with a discrete environment have 216 possiblPéJS voltage angles from a DC_‘.’P“”?a' power flow.
o study of parameter sensitivity is performed and alterna-

actions to choose from in each state when required to SUbrt?\}e function approximation and back-probagation techai
one offer per generator. Fig. 2 shows that, using Q-leariieg bp bropag &

. . ) . and configurations could also be investigated in the future.
agents are able to learn an effective policy that yieldssased . : o
) . . . : Given the performance of the Q-learning method in this paper
profits using two different portfolios. The importance ofl-ut

. X . . g . further work might also involve extended versions of this
ising environment state data in a dynamic electricity sgtti

is illustrated by the differences in average reward reckwe method, such as Neuro-Fitted Q-lteration [41] and(®(342],

the modified Roth-Erev method and the Stateful Roth—Eréb/at have been developed for use in continuous multivariate

method. The optimal action for an agent depends upon t%réwronments.
current system load and the stateless Roth-Erev formulatio
is unable to interpret this. The Stateful Roth-Erev methaxl ¢
be seen to achieve approximately the same performance aghe authors wish to thank the researchers from Cornell
Q-learning. University, especially Dr Ray Zimmerman, for their work on

Including bus voltage constraint data in the state for a dithe optimal power flow formulations in MrPOWER and for
crete environment would result in a state space of impralcti@iving the authors permission to translate them into Python
size, but including it in a continuous environment was ghii  Similarly, the authors are very grateful to the researcfrers
forward. Fig. 3 and Fig. 4 show that ENAC achieves greatBxalle Molle Institute for Artificial Intelligence (IDSIA) ad
profits when presented with a combined demand forecast ¢hé Technical University of Munich involved in developing
bus voltage state vector. REINFORCE performs less well théte reinforcement learning algorithms and artificial néura
ENAC, but also shows improvement over the pure demanétworks that form PyBrain.
forecast case. ENAC achieves equivalent, but not greater
performance than Q-learning in all periods of the trading da REFERENCES
when _usmg th_e voltage d_ata' Itis not able to use the ad("’i'h(?n[l] A. M. Leslie Pack Kaelbling, Michael Littman, “Reinfoeenent learning:
state information to achieve any advantage over Q-learning A survey,” Journal of Artificial Intelligence Researghol. 4, pp. 237
but it does learn a profitable policy. 2 é35'T1996- DG fteaching. back

. . . lesauro, -Gammon, a seli-teaching ackgammongianm,

Chgnglng the number of offers that .are requwed to bé achieves master-level playNeural Computationvol. 6, no. 2, pp. 215—
submitted for each generator from 1 to 2, increases the numbe 219, 1994.
of discrete action possibilities in each state to 46,65§. bi [3]1 J. N. Tsitsiklis and B. V. Roy, “Feature-based methods ltuge scale

h h | . . ill abl hi imilar | dynamic programming,” irMachine Learning1994, pp. 59-94.
shows that Q-learning is still able to achieve a S'_m' ar €V€141 G. Gordon, “Stable function approximation in dynami@gramming,”
of reward as under the one offer case. The profitability for = in Proceedings of the Twelfth International Conference on iitee
both methods is degraded, but ENAC receives significantly —Learning Morgan Kaufmann, 1995, pp. 261-268. _
. (Eg L. Baird, “Residual algorithms: Reinforcement leamimvith function

lower average reward when required to produce a largerracti
vector and is not able to use the increased flexibility in fisro

VIl. DISCUSSION

ACKNOWLEDGMENT

approximation,” inProceedings of the Twelfth International Conference
on Machine Learning Morgan Kaufmann, 1995, pp. 30-37.



IEEE TRANSACTIONS ON POWER SYSTEMS

(6]

(7]

(8]

El

[20]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, lfBogradient
methods for reinforcement learning with function approaiion,” in

Advances in Neural Information Processing Systevok 12, 2000, pp.
1057-1063.

J. Peters and S. Schaal, “Policy gradient methods footich” in In-

telligent Robots and Systems, 2006 IEEE/RSJ InternatiGoalfference
on, October 2006, pp. 2219-2225.

J. Moody and M. Saffell, “Learning to trade via direct mé@rcement,”

IEEE Transactions on Neural Networksol. 12, no. 4, pp. 875-889,

July 2001.

J. Moody, L. Wu, Y. Liao, and M. Saffell, “Performance fttions and
reinforcement learning for trading systems and protfglideurnal of
Forecasting vol. 17, pp. 441-470, 1998.

L. Peshkin and V. Savova, “Reinforcement learning fdeative routing,”

in Neural Networks, 2002. IJCNN 2002. Proceedings of the 2002

International Joint Conference owol. 2, 2002, pp. 1825-1830.
A. E. Roth, I. Erev, D. Fudenberg, J. Kagel, J. Emiliedd X. Xing,
“Learning in extensive-form games: Experimental data danple dy-

namic models in the intermediate tergames and Economic Behavjor

vol. 8, no. 1, pp. 164-212, 1995.

Application of Probability Methods Subcommittee, BE reliability test
system,” Power Apparatus and Systems, |IEEE Transactions vah
PAS-98, no. 6, pp. 2047-2054, November 1979.

R. S. Sutton and A. G. Bart®&einforcement Learning: An Introduction
MIT Press, May 1998.

C. Watkins, “Learning from delayed rewards,” Ph.D.sdigtation, Uni-
versity of Cambridge, England, 1989.

G. A. Rummery and M. Niranjan, “Online Q-learning usiognnection-
ist systems (Tech. Rep. No. CUED/F-INFENG/TR 166}ambridge
University Engineering Department994.

R. L. Rivest and C. E. Leisersomptroduction to Algorithms New
York, NY, USA: McGraw-Hill, Inc., 1990.

L. Fausett, Ed.Fundamentals of neural networks: architectures, algo-
rithms, and applications Upper Saddle River, NJ, USA: Prentice-Hall,

Inc., 1994.
R. S. Sutton, “Generalization in reinforcement leagi Successful ex-

amples using sparse coarse coding,Aivances in Neural Information

Processing Systemsol. 8, 1996, pp. 1038-1044.

H. Benbrahim, “Biped dynamic walking using reinforcent learning,”
Ph.D. dissertation, University of New Hampshire, Durhant{, NUSA,
1996.

R. J. Williams, “Simple statistical gradient-follomg algorithms for
connectionist reinforcement learning,” Machine Learning 1992, pp.
229-256.

J. Peters and S. Schaal, “Natural actor-critdgurocomputingvol. 71,
no. 7-9, pp. 1180-1190, 2008.

J. Peters, “Policy gradient methods,” Scholarpedia
vol. 5, no. 11, p. 3698, 2010. [Online].
http://www.scholarpedia.org/article/Policgradient methods
J. Nicolaisen, V. Petrov, and L. Tesfatsion, “Marketygo and efficiency
in a computational electricity market with discriminatafguble-auction
pricing,” Evolutionary Computation, IEEE Transactions, ®ol. 5, no. 5,
pp. 504-523, August 2002.

P. Visudhiphan and M. llic, “Dynamic games-based midgbf elec-

Available:

[31] T. Krause and G. Andersson, “Evaluating congestion ageament
schemes in liberalized electricity markets using an apesed sim-
ulator,” in Power Engineering Society General Meeting, 2006. IEEE
2006.

F. Kienzle, T. Krause, K. Egli, M. Geidl, and G. AnderssdAnalysis
of strategic behaviour in combined electricity and gas m@rkusing
agent-based computational economics,’lst European workshop on
energy market modelling using agent-based computatiooah@mics
Karlsruhe, Germany, September 2007, pp. 121-141.

J. Wang, V. Koritarov, and J.-H. Kim, “An agent-basedpagach to
modeling interactions between emission market and etégtinarket,”
in Power Energy Society General Meeting, 2009. PES 2009. |B&ly
2009, pp. 1-8.

M. A. Rastegar, E. Guerci, and S. Cincotti, “Agent-bhsmodel of
the ltalian wholesale electricity market,” i@Bnergy Market, 2009. 6th
International Conference on the Europeaviay 2009, pp. 1-7.

A. R. Micola and D. W. Bunn, “Crossholdings, conceritvat and
information in capacity-constrained sealed bid-offer tawns,” Journal
of Economic Behavior & Organizatigrvol. 66, no. 3-4, pp. 748-766,
2008.

A. Weidlich and D. Veit, “Bidding in interrelated dayhaad electricity
markets - insights from an agent-based simulation modelProceed-
ings of the 29th IAEE International Conferenckily 2006.

D. Veit, A. Weidlich, J. Yao, and S. Oren, “Simulatingetldynamics in
two-settlement electricity markets via an agent-basedagoh,” Inter-
national Journal of Management Science and Engineeringddament
vol. 1, no. 2, pp. 83-97, 2006.

D. Vengerov, “A gradient-based reinforcement leagnapproach to dy-
namic pricing in partially-observable environmentB({iture Generation
Computer Systemsol. 24, no. 7, pp. 687-693, 2008.

R. Zimmerman, C. Murillo-Sanchez, and R. Thomas, “MAIWWER:
steady-state operations, planning and analysis tools daep systems
research and educatiorPower Systems, IEEE Transactions wal. 26,
no. 1, pp. 12-19, February 2011.

T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, FhiSe,
T. Ruckstie, and J. Schmidhuber, “PyBrainjburnal of Machine
Learning Researchvol. 11, pp. 743-746, 2010.

M. Riedmiller, “Neural fitted Q iteration - first experiees with a data
efficient neural reinforcement learning method,” Im 16th European
Conference on Machine Learning Springer, 2005, pp. 317-328.

H. R. Maei and R. S. Sutton, “GQ): A general gradient algorithm
for temporal-difference prediction learning with elidityi traces,” in
Proceedings of the Third Conference on Artificial Generdélligence
Lugano, Switzerland, 2010.

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

Richard Lincoln Richard Lincoln received the M.Eng. degree in Electrical
and Mechanical Engineering from The University of Edinburp 2005
and a PhD in Electrical and Electronic Engineering from Theversity of
Strathclyde in 2011. His research interests include autsnanergy trade
and open source software for power system simulation andaNgstion.

tricity markets,” in Power Engineering Society 1999 Winter Meeting,

IEEE, vol. 1, February 1999, pp. 274-281.

J. Bower and D. Bunn, “Experimental analysis of the @dficy of

uniform-price versus discriminatory auctions in the Engdland Wales
electricity market,"Journal of Economic Dynamics and Contrabl. 25,

no. 3-4, pp. 561-592, March 2001.

D. Ernst, A. Minoia, and M. llic, “Market dynamics drineby the

decision-making of both power producers and transmisswmecs,” in

Power Engineering Society General Meeting, 2004. |EHEhe 2004,
pp. 255-260.

G. Conzelmann, G. Boyd, V. Koritarov, and T. Veselka, Ulitagent

power market simulation using EMCAS,” ilEEE Power Engineering
Society General Meeting/ol. 3, June 2005, pp. 2829-2834.

J. Bower, D. W. Bunn, and C. Wattendrup, “A model-basedlgsis of

strategic consolidation in the german electricity indystEnergy Policy

vol. 29, no. 12, pp. 987-1005, 2001.

D. W. Bunn and F. S. Oliveira, “Evaluating individual nkat power

in electricity markets via agent-based simulatiofrinals of Operations
Researchpp. 57-77, 2003.

T. Krause, E. V. Beck, R. Cherkaoui, A. Germond, G. Arsden, and
D. Ernst, “A comparison of Nash equilibria analysis and admsed

modelling for power marketsfhternational Journal of Electrical Power
& Energy Systemsvol. 28, no. 9, pp. 599-607, 2006.

Stuart Galloway Dr Stuart Galloway is currently a senior lecturer in the
Institute for Energy and Environment at the University ofaBiclyde. He
was initially appointed as a Rolls-Royce Senior Researdlowdocusing on
novel distributed generation control and electricity nearkading problems.
Prior to this he undertook doctoral research in applied erattics at the
University of Edinburgh. His current research interestdude the application
of optimisation techniques to power engineering probleths, modelling of
novel electrical power systems and market simulation.

Bruce StephenDr Bruce Stephen (M '09) currently holds the post of Senior
Research Fellow within the Institute for Energy and Envinemt at the
University of Strathclyde. He received his B.Sc. from GlasgUniversity
and M.Sc. and PhD degrees from the University of Strathclyie research
interests include Distributed Information Systems, Maehiearning applica-
tions in Power System and Animal Welfare Condition Monitgriand Asset
Management.



