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Abstract. Goal recognition is generally considered to follow plan
recognition. The plan recognition problem is typically defined to be
that of identifying which plan in a given library of plans is being ex-
ecuted, given a sequence of observed actions. Once a plan has been
identified, the goal of the plan can be assumed to follow. In this work,
we address the problem of goal recognition directly, without assum-
ing a plan library. Instead, we start with a domain description, just as
is used for plan construction, and a sequence of action observations.
The task, then, is to identify which possible goal state is the ultimate
destination of the trajectory being observed.

We present a formalisation of the problem and motivate its inter-
est, before describing some simplifying assumptions we have made
to arrive at a first implementation of a goal recognition system, AU-
TOGRAPH. We discuss the techniques employed in AUTOGRAPH to
arrive at a tractable approximation of the goal recognition problem
and show results for the system we have implemented.

1 INTRODUCTION
Goal Recognition (GR) is the process of inferring an agent’s end
goals given a series of observed actions. This is clearly related to
the Plan Recognition (PR) problem which aims to also find the plan
being executed. Planning is simply the generation of these plans in
an efficient and sensible manner. Yet despite both being based on
actions, states and goals, and effectively mirroring one another, ad-
vances in research have rarely overlapped.

Previous work has often focused on a single application of the
recognition problem, such as identification of human goals through
observation of behaviour [15], giving speech/text context [9] or re-
sponding with natural dialogue [20]. These have all resulted in sys-
tems and algorithms that lack generality or widespread application.

AUTOGRAPH (AUTOmatic Goal Recognition with A Planning
Heuristic), is a new approach to Goal Recognition which makes use
of Planning techniques. The system uses a standard planning domain
model, avoiding the construction of a goal/plan library.

2 MOTIVATION AND PRIOR APPROACHES
Plan and Goal Recognition problems are motivated by the desire to
anticipate the actions or objectives of an agent that is being observed.
There are many situations in which this could be useful, including de-
tection and prevention of crime, in teaching, in monitoring the elderly
or infirm in their own homes, in military operations and in games. In
computer games, intelligent responses to human player activity de-
pend on recognising what that activity might be. Creating a believ-
able and responsive environment that allows players to participate
in a truly immersive experience requires that computer controlled
agents react to human players with plausible levels of understanding
of the human players’ actions. This context, in particular, motivates
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two assumptions underlying our work: first, that the actions are fully
observable (game software mediates every action on behalf of the
players) and, second, that we are interested in identifying goals as
early as possible during the execution of the plan.

Kautz [17] defines the plan recognition problem as minimising
the number of top-level, hierarchical plans which explain a sequence
of observed actions. Plans were taken from a plan graph and ev-
ery action is assumed to be relevant to the plan being executed. The
library containing known, valid plans has remained a key element
of plan recognition ever since. This structure presents several draw-
backs such as the time, effort and space required to construct it and
its inevitable incompleteness and irrelevant content. AUTOGRAPH at-
tempts to address these problems in three areas: Completeness, Scal-
ability and Domain Independence.

Completeness: It is impossible to generate and store every valid
plan in a library for non-trivial problems. Previous work has often
made use of tree-like structures to represent a large number of
plans efficiently but cannot hold all possible plans or goals. In our
work, any conjunction of literals may form a hypothesis.

Scalability: The scaling behaviour of plan recognition systems is
highly dependent on library sizes. This and the previous problems
combine to create a tension between scalability and completeness.

Domain Independence: Generating plan libraries is time-
consuming and restricts application to domains for which libraries
are available.

The goal recognition system of Blaylock and Allen [1] does allow
unseen plans to be recognised but must first be trained using valid
plans and explicitly defined goals. Lesh and Etzioi have also ex-
plored adapting recognition to a previously unseen plan with the
ADAPT system [19, 18]. The recogniser is trained using recent be-
haviour which has not been annotated with the true goal. This data is
then used to try and find the combination which provides the best re-
sults. Unlike the previous system, this work does not assume access
to training data or require a policy to be constructed for recognition.

We are not the first to propose using planning for recognition.
Hong [14] proposes an approach in which, as actions are observed,
a goal graph is constructed similarly to a plan graph, with proposi-
tions which are recognised goals being linked into a goal layer. The
system scales well, but must be provided with an explicit set of valid
goals to be used in the graph construction and analysis processes.

Most recently Ramı́rez and Geffner [22] make use of heuristic es-
timation to eliminate goals from a candidate set, due to an increasing
heuristic distance from the current state. The authors present two ap-
proaches, assuming optimal or suboptimal plans, with goals that have
become impossible being removed from the possible set. Once candi-
date goals have been eliminated they are never reconsidered. Ramı́rez
and Geffner assume a (small) set of possible goal states is supplied
explicitly and they work with an assumption of partial observability,
so that only a subsequence of the plan is observed.



3 PROBLEM DEFINITION
We now formally define the goal recognition problem. We start with
the same framework that is used in classical planning, based on a
propositional action model structure. A goal recognition problem is
based on a standard planning problem (the facts, actions and initial
state). Of course, the goal recognition problem does not contain a
goal specification — the problem is to find this specification.

Definition 1. Goal Recognition Problem Base
A goal recognition problem base is a triple 〈F,A, I〉, where F is a
set of primitive (propositional) facts, A is a set of actions and I ⊆ F
is the initial state for the problem. Each action a ∈ A is a triple
〈prea, adda, dela〉, where prea, adda, dela ⊆ F are the precondi-
tions, add effects and delete effects of a, respectively.

In addition to the base, a goal recognition problem requires ob-
servations: a sequence of actions. We assume that all actions and
states are fully observable, but we want to identify the goals as early
as possible during execution of the plan. Before we define the goal
recognition problem, however, we briefly consider the nature of the
solutions we seek and the implications this has on the problem itself.
Our expectation is that we should be presented with a goal recogni-
tion problem base and a series of actions, with the objective being to
identify the target goals of the agent performing the actions. We as-
sume that the agent actually has a target and is not simply executing
actions at random. However, even though the agent has an objective,
it is not clear that the actions we observe will be unambiguously lead-
ing the agent towards this. To simplify things, we begin by assuming
that the agent is sufficiently intelligent to make optimal choices in
planning for its goal. This is a strong assumption and we consider
the implications of weakening it shortly. Even under this assump-
tion, identifying goals is hard. A further problem is that goals can be
any subset of facts that is achievable from the initial state so, as we
observe actions, each new state could be the goal — the path taken
to reach it will be the shortest path (if there were a shorter path then
it would contradict our assumption that the agent is executing an op-
timal plan) and, therefore, it will be consistent with the observations
that this is precisely what the agent intended to achieve.

In general, there are many goal sets consistent with a sequence of
observed actions, ranging from the possibility that the most recent
state was in fact the goal state to the possibility that there are many
goals towards which the agent has not yet even begun to act. How-
ever, these possibilities are not all equally likely: in most domains
there is a clear bias towards certain kinds of goals. This motivates
the following definition:

Definition 2. Goal Hypothesis and Goal Hypothesis Space
Given a goal recognition problem base, G, with facts F , a goal hy-
pothesis for G is a probability distribution over subsets of F reach-
able from the initial state using actions in G. The goal hypothesis
space for G, H, is the set of all such goal hypotheses for G.

Note that as a special case a goal hypothesis might assign equal
non-zero probabilities to some subset of reachable sets of facts and
zero to all others (that is, a uniform distribution over a subset of the
candidate goals). We will refer to this case as the uniform goal hy-
pothesis over this subset of goals.

Definition 3. Goal Recognition Problem
A goal recognition problem is a triple, 〈G,HI , (o1, o2, ..., on)〉,
where G is a goal recognition problem base, HI is an initial goal
hypothesis and (o1, ..., on) is the sequence of actions observed one-
by-one during the problem.

Each observation in a goal recognition problem updates the hy-
pothesis space, so that candidate goals that are further away from
the new state than the previous state are assigned an updated prob-
ability of 0, while the remaining probability mass is re-normalised
across the other states. Nothing observable in the sequence can lead
us to modify the relative probabilities of goals that have a common
shortest path following the observations made so far. It is interest-
ing to note that actions are transitions between goal hypotheses in an
analogous way to their behaviour as transitions between states.

Unfortunately, a goal hypothesis is potentially exponentially large
in the size of the set of facts for the underlying planning problem.
This is generally far too large to make it possible to represent goal
hypotheses explicitly. However, in the work of Ramı́rez and Geffner
[22], the initial goal hypothesis is described explicitly, by enumera-
tion (although in their work they do not refer to probabilities). Their
work can be interpreted as offering a way to handle the special case
of uniform goal hypotheses, but restricted to small (that is, explicitly
enumerated) subsets of candidate goal sets.

Explicit representation of H for anything other than trivial prob-
lems is impossible, due to its exponential size. We therefore intro-
duce an approximation of the space which is tractable, but at the price
that we cannot accurately represent all possible goal hypotheses.

Definition 4. Approximate Goal Hypothesis
An nth order approximation to a goal hypothesis, H , is a goal hy-
pothesis, Ĥ , where Ĥ(f) = H(f) when |f | 6 n and, Ĥ(f) =
minx∈f Ĥ(f \ {x}) · Ĥ({x})/N , where N is an appropriate nor-
malising factor to ensure that Ĥ is a probability distribution.

An approximate goal hypothesis is not necessarily a member of
the same goal hypothesis space as the goal hypothesis it approxi-
mates, because the approximation can assign non-zero probabilities
to unreachable sets of facts. Identifying unreachable sets is as hard
as planning, so allowing these sets to be assigned non-zero values
is a useful efficiency measure. The method by which probabilities
are combined in the recursive extension of the approximation to the
whole space of possible goals is somewhat arbitrary and alternative
approximations are certainly possible. In our current work we only
consider 1st order approximations, so the probability of sets of facts
is the product of the probabilities of the individual facts they include.
This is equivalent to assuming that the individual goals have indepen-
dent probabilities of appearing. Although 1st order approximations
are poor in domains where goals are strongly correlated, in many do-
mains we see goals falling into independent selections of states of a
collection of objects (such as packages in a delivery domain).

This independence assumption clearly does not hold for all do-
mains, for example BLOCKSWORLD problems often have the same
numbers of goal and initial-state literals. We currently focus on prob-
lems which do exhibit this property, although we also consider the
performance of the approximation on other benchmark domains.

Within the framework we have now defined, it is apparent that
each successive observation implies an update of the current goal
hypothesis reducing the probabilities of reachable facts that are sub-
sets of those states which are now no closer in the state than the prior
state. However, it is impractical to identify exactly which states these
are. Furthermore, the assumption that the agent that is being observed
has the capability to identify the shortest path to its goal, without er-
ror, is unreliable. For this reason, we work with 1st order approxi-
mations and update by reducing the probability associated with facts
that get further away following observed actions and increasing the
probabilities of facts that get closer.



4 RECOGNITION WITHOUT LIBRARIES
AUTOGRAPH performs goal recognition in four stages: Analysis,
wherein the problem is instantiated and analysed to reveal useful
aspects of the domain; Observation, in which a single, ordered ac-
tion is fed into the recogniser and the current state updated to reflect
its effects; Intermediate Hypothesis Generation, in which a single
hypothesis is produced after each observation2; and, lastly, a Final
Hypothesis is generated once the plan is known to have finished.

4.1 Analysis
Domain analysis can provide rich information to aid subsequent
search [6, 10, 11], lowering search time and shortening plan length.
We apply relevant prior research to GR and develop new techniques
that allow the recogniser to make more informed hypotheses.

4.1.1 Problem Representation
We use domains encoded in PDDL2.1 [7] and then apply Helmert’s
translator [12] to translate these into a SAS+ formalism. Two key
products of this translation process are Domain Transition Graphs
(DTGs) and a Causal Graph (CG), both of which encode aspects of
the original PDDL problem in another form. We use both the PDDL
and SAS+ representations of the problem during analysis, as they
can each reveal aspects of the domain that aid in recognition. The
Causal Graph reveals how objects influence others within the domain
through actions: of particular interest are the leaf nodes, correspond-
ing to objects with no influence on others.

Definition 5. CG Leaves
A node, v, in the causal graph with |vout| = 0 is a leaf variable and
any fact which contains a leaf variable in its parameters is a leaf
proposition.

Should a causal graph contain leaf nodes, any leaf proposition that
is not true in the initial state can be seen as a likely goal, as it can
play no role other than to be altered.

Modern planners typically use a grounded problem that contains
all possible fact and action combinations, often including some that
are unreachable (e.g. (on crate1 crate1)). We filter this set
to include only reachable facts which can then be further analysed to
reveal certain domain characteristics that aid in recognition.

By using an action-centred model to define domains we lose the
knowledge present in more structured hierarchical models, but note
that such information can often be extrapolated through domain anal-
ysis. It is also the case that, while our first-order approximation will
reduce the size of the goal-space, it often makes determining the true
goal state of an object difficult. Where object goal states are modelled
by properties drawn from several sets, the first-order approximation
will not explicitly link these properties. However, plans achieving
such collections will show correlated increases in probabilities for
all of the goal properties, so the linkage is implicit in the treatment
of the updates.

4.1.2 Predicate Partitioning
Geib [8] proposed the concept of plan heads in Plan Recognition as
a way to highlight important plan actions and allowing lazy com-
mitment to plans, resulting in faster runtimes. We adapt this idea for
GR through the concept of predicate partitioning. By automatically
classifying propositions into mutually-exclusive sets it can often be-
come clear which are more or less likely to be goals. For example,
in a standard Logistics problem it is unlikely that the goal will be to

2 If the plan has further actions to be observed, steps 2 and 3 are repeated
until this is no longer the case.

simply have a package inside a truck and far more likely that it must
be delivered to a warehouse. Facts can be placed in the following sets
through analysis of the two domain representations, which can then
be applied to the initial probability distribution.

Definition 6. Predicate Partitions – A fact f is:

1. strictly activating iff f ∈ I and ∀a ∈ A, f /∈ eff a and ∃a ∈ A,
f ∈ prea, where A is the set of grounded actions and eff a =
adda ∪ dela. Strictly activating (SA) facts are often referred to
as static. These facts can never be removed from the state and
therefore extremely unlikely to be goals.

2. unstably activating iff f ∈ I and ∀a ∈ A, f /∈ adda and ∃a ∈ A,
f ∈ prea and ∃a ∈ A, f ∈ dela. Unstably Activating facts differ
from SA facts in that they can be deleted by at least one action, but
once removed from the current state, cannot be re-added. Once
deleted they can be removed from future hypotheses.

3. strictly terminal iff ∃a ∈ A, f ∈ adda and ∀a ∈ A, f /∈
prea, f /∈ dela. These facts are assigned a high initial proba-
bility. Once added to the current state, they will not be removed,
meaning they must appear in the final state.

4. unstably terminal iff ∃a ∈ A, f ∈ adda and ∀a ∈ A, f /∈ prea,
but ∃a ∈ A, f ∈ dela. Unlike strictly terminal facts, these can
be removed once they have been added, but they are never used as
preconditions to any actions. They may simply be an uninteresting
side-effect of an action, or involved in a mutex-relation.

5. waypoint iff f has predicate symbol predf and ∀q ∈ dtg(f)out,
|dtg(f)out| > 2, and

∪n
i=1 predqi = predf , where dtg(f)out

is the set of DTG vertices to which f is connected by at least two
outgoing edges. It is common for problems to involve transforming
objects through a chain of related states, all defined by the same
predicate. The facts located within this predicate-chain (exclud-
ing end-points) are waypoint facts, and are assigned a low initial
probability.

6. transient iff the predicate symbol for f is predf and ∀q ∈
dtg(f)out,

∪n
i=1 predqi = predq1 and predq1 6= predf , where

dtg(f)out is the set of DTG vertices to which f is connected by
at least two outgoing edges. While waypoints form chains of facts
sharing the same predicate, transient facts are intermediate values
in a transition that use a different predicate. Furthermore, objects
entering the transient state must return to a state with the same
predicate as the one they originally left. It is generally unlikely
that the goal will be to leave the object within this intermediate
state so we assign them a low probability in the initial-probability
distribution.

7. binary iff ∀dtg ∈ DTG, |dtg(f)| = 2. As a special case, facts
that have a DTG of size 1 are also considered binary, by including
the negated literal. Binary facts are assigned low initial probabil-
ities as it is difficult to assess which of them might be relevant to
the goal.

In addition to these sets, a further neutral set is defined, containing
all facts that have not been partitioned into one of the above sets.

The population of the various partitions is dependent on the do-
main being analysed. For example the ROVERS domain populates
5 partitions, while others such as ZENOTRAVEL largely categorise
facts in the waypoint and transient sets. Overall results of this parti-
tioning process on the testing domains can be seen in Table 13. The
populations of these partitions are used during construction of the
initial-probability distribution.
3 Note that strictly activating facts do not appear in any of the test domains,

as they are filtered during grounding.



Problem T W UT ST UA SA B N
Driverlog 3127 2005 0 0 0 0 67 741
Depots 3773 238 0 0 0 0 423 1940
Rovers 0 3986 0 592 1001 0 736 11159
Zenotravel 3350 1091 0 0 0 0 0 77
Storage 2417 683 456 0 0 0 327 493

Table 1: Abbreviated results indicating partition totals for the problem
files associated with each domain.
4.1.3 Landmarks

The use of landmarks in heuristic search has shown that they can be
a powerful guide through the search-space [21, 24]. We detect land-
marks for all f ∈ H, where H is the set of all facts within the goal-
space, and store these in lists of the form (Lm1, Lm2...Lmn, f).
These landmark-lists show which facts are “stepping-stones” to the
final goal. For instance, if (in truck1 package3) is added to
the current state after an observation and that same fact is in two
landmark lists, it is sensible to increase the probability of proposi-
tions which follow this landmark as being goals – or a the very least
not lower their probability. This is covered in further detail during
the Execution section.

4.1.4 Unhelpful Facts

While Helmert’s SAS+ translation also approximates the set of all
reachable facts, it is likely that some will never appear as a goal. We
begin to reduce the set of facts by first observing that it is extremely
unlikely that a problem will be considered a planning problem if its
goals can be achieved in a single step, since this could be achieved
by purely greedy action selection. Therefore, any action applicable
in the initial state is considered unhelpful and its effects are assigned
negligible probability in the initial hypothesis. Additionally, if the
domain contains strictly-terminal facts, we assign negligible prob-
ability to the preconditions of any action which achieves them by
reasoning that the enabling conditions for achievement of a strictly-
terminal fact are very unlikely to be goals instead of the terminal
itself.

Definition 7. Unhelpful Facts
Given an initial state I , the set of unhelpful effects is equivalent to∪|AI |

m=1 addam where AI is the set of actions applicable in I . Further-
more, if a domain exhibits strictly-terminal facts FsTerm, the set of
unhelpful preconditions is equivalent to

∪|AST |
n=1 prean where AST

is the the set of all actions that achieve any member of FsTerm.

4.1.5 Initial Probability Distribution

Once the analysis phase has been completed, each fact f in the ap-
proximate hypothesis space H can be assigned an initial probability.
This figure is dependent on which, if any, of the previous domain
analysis criteria the fact has met.

The values assigned during this phase are selected directly accord-
ing to which partition facts belong to among those described above.
For example, strictly terminal and unstably terminal facts are given
very high values because they only exist to be achieved, i.e. they do
not appear as a precondition to any action. Conversely, strictly ac-
tivating facts are given a probability of 0 as they will remain true
throughout execution, making their appearance in the goal futile.
Waypoint, transient and binary facts must be treated with more cau-
tion, as it is conceivable that they could be a goal, but more likely
to be used as a means of achieving other goal propositions. Further-
more, leaf propositions which are not true in the initial state are all
assigned the same value, as it is equally likely that the leaf variable
contained within them could appear in any one of them in the goal

state. The values selected for each partition are somewhat arbitrary
and we have not yet explored the effect of a wide range of alternative
assignments. Our initial experiments suggest that the system is not
particularly sensitive to the precise choice of values.

4.2 Execution
Once the domain has been analysed and the initial goal-space popu-
lated, plan observation can begin. After each observation we record
the heuristic estimate to each fact in the approximate hypothesis
space.

By observing the estimated distance to each fact after action ob-
servations, it is possible to determine those which are being moved
towards and away from. Each fact which has a lower heuristic esti-
mate at time t than it did at t − 1 has its probability of being a goal
increased, while those which now have a larger estimate have their
probability set to 0. Facts whose estimate remains unchanged do not
have their probability updated as they may be goals which have been
achieved at time t.

4.2.1 Landmark-Linked Facts

The above probability increments and decrements apply to all propo-
sitions in the goal space, with the exception of those which appear as
landmarks of other goals. If a fact Lf is classified as a landmark of
another fact and is getting closer, then it is reasonable to assume any
facts ordered after Lf are more likely to appear than other facts.

Landmarks which succeed Lf have their probabilities increased
as it is possible they may be the true goal. The increment value of
these successors is lower than a standard fact increment, with this
decreasing linearly over any successor landmarks until 0 or the end
of the list is reached. However, if the predecessor of Lf is being
moved away from then Lf and successor landmarks do not have their
probability modified. This is due to the possibility of search “turning
around” towards Ln once Ln−1 is achieved.

4.3 Hypothesis Generation
By using a 1st order approximation of a goal hypothesis we rely on
goal sets being small. However, it would be naı̈ve to assume that all
domains only contain a single literal as their goal. We therefore con-
struct an intermediate greedy hypothesis hi from the approximate
goal hypothesis constructed at each timestep i, representing the sin-
gle most likely goal of the agent being observed.

To produce this set, facts are considered in mutually exclusive
clusters (the sets that make up the nodes in a single DTG). The
fact with highest probability within each cluster is selected, provided
it has probability higher than a specified threshold (this eliminates
highly unlikely candidates from the set).

Definition 8. Greedy-Hypothesis
Given an approximate hypothesis space H, a greedy-hypothesis hgr

is the set of facts with the highest probabilities above a base thresh-
old, Tmin, with ties broken randomly. If a fact f is chosen, then all
facts that are mutex with it will not be added to hgr .

4.4 Final Hypothesis
Once the plan is known to have terminated and the final state is
known, a more accurate final hypothesis can be produced. This is
simpler than generating an intermediate hypothesis since G ⊆ Sn,
and the state is certainly mutex-free. Along with the final probability
distribution, this can produce a very accurate goal hypothesis without
considering fact probabilities.



5 EVALUATION
We now present empirical results of several tests performed on the
techniques presented previously. While others have previously ex-
pressed a desire for plan and goal recognition to have a standard
evaluation method [4], there is still no agreement on standard bench-
marks. Therefore, we have used classical planning benchmarks as
an alternative. The system is evaluated using precision and recall, a
technique used to score database document-retrieval which has also
previously been applied to a GR context [2], where the number of
required facts in each hypothesis is the precision and the number of
correct facts is the recall.

The test system is written in Java and makes extensive use of a
Java implementation of the FF planner [5]. SAS+ translation is per-
formed using Helmert’s standard Python scripts [12], which is then
converted into a Java representation. Tests were conducted in Ubuntu
9.10 on a quad core 2.8GHz Intel i5 with 4GB of RAM using the lat-
est Java Virtual Machine (1.6.0 14), and were given as much time as
necessary to complete each stage of the recognition process.

The domains used in testing are taken from the 2002 and
2006 International Planning Competitions – specifically the proposi-
tional/STRIPS versions of DRIVERLOG, DEPOTS and ZENOTRAVEL,
ROVERS and STORAGE, along with their best-known-solutions.

All of the domains have 20-40 associated problem files4 which
become increasingly difficult for planners to solve. Harder problems
have much larger goal-spaces than trivial problems, which means
that the recogniser has a much wider hypothesis space to work with.
However, in compliance with our expectations, the number of facts
in the goal state of these problems does not increase at the same rate
as the number of grounded facts.

We have tested the system using the Max (hmax), FF (hff ) and
Causal Graph (hcg) heuristics [3, 13, 23] in order to determine how
this choice affects performance. We note that in testing with these
heuristics in combination with solutions produced by planners which
also use the heuristic there is the possibility of heuristic bias, but that
this should not adversely affect the results.

5.1 Intermediate Hypothesis Results
The results of precision versus recall for intermediate hypotheses
over all domains and heuristics can be seen in Table 2. Also included
are the average precision and recall over all problems using hff at
various timepoints. These latter results show heuristic convergence
as precision and recall increase at over the course of plan execution.

The process of heuristic-convergence is more clearly visible in
Figure 1 which contains the results of a typical ZENOTRAVEL prob-
lem. All three heuristics move towards the true goal, but with occa-
sional dips in accuracy. This is a result of all three heuristics chosen
being inadmissible. By being able to both over and under-estimate
the distance to a goal, facts may be incorrectly classed as becom-
ing further away after an observation. In the future it may be of
use to apply an admissible heuristic which would guarantee never
to over-estimate the distance, and thus possibly remove these fluctu-
ations. Note that hcg provides the fewest drops in accuracy, but not
the quickest convergence rate.

Perhaps of most interest is that there is no clear leader in terms
of heuristic chosen to generate estimates. While hcg has the high-
est overall P+R results, this is primarily caused by the results of
ROVERS, which contains more tests than other domains. The nor-
malised results in Table 2 show the difference between this and hff

4 All problems were tested with the exceptions of DEPOTS 21 and 22, ROVERS
37-40, STORAGE 24-30 which could not be grounded correctly.
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Figure 1: Intermediate P+R results for a single problem instance in
ZENOTRAVEL.
is minor, while Figure 1 shows how close the estimates are on an
individual problem.

5.2 Final Hypothesis Results
Once the plan being observed is known to have finished, the final
hypothesis can be generated. Table 3 shows the total normalised P+R
values for the final hypotheses in each problem. We note that the
seeming indifference of heuristic choice is further reinforced by these
results, as all three heuristics produce identical final P+R results.

With the exception of DEPOTS and STORAGE, the recogniser pro-
duces highly accurate hypotheses for all problems in terms of both
precision and recall. ROVERS shows particularly accurate results due
to the presence of strictly-terminal facts, which produces a perfect
score for recall, and 95% average for precision.

In the case of DEPOTS and STORAGE, precision scores average
only 52% and 32% respectively. This is caused by the large num-
ber of facts which become true during execution of a typical plan,
which along with a small goal set combine to form a large hypothe-
sis with extraneous facts. For instance, the location of certain trucks
is often not a required goal in DEPOTS, but will be put forward as a
goal because trucks will stop moving once the last package has been
delivered to its destination.

Domain Depots Driverlog Rovers Zenotravel Storage
Precision 0.52 0.94 0.96 0.86 0.32

Recall 0.93 0.73 1 0.7 0.95

Table 3: Normalised total values for precision and recall values associated
with the final hypothesis for each domain

5.2.1 Accuracy of Initial Hypothesis After Final
Observation

In the Analysis section we described the generation of an initial
probability distribution using only domain analysis. At the time it
this generated, it is unlikely that construction of a greedy-hypothesis
would produce an accurate result as no observations have been seen.
However, if this initial, unmodified probability distribution is com-
bined with the final state it can often produce an accurate hypothesis.
Table 4 shows the difference in overall P+R when this is compared
with the true final hypothesis. These results show that, in the case
of DEPOTS, precision can be increased by over 40% whilst also in-
creasing recall, while ZENOTRAVEL also shows this to a lesser extent.
Moreover, the presence of terminal facts in STORAGE and ROVERS

shows that it is possible to achieve almost 100% accuracy on both
precision and recall without modifying the initial probability distri-
bution. Only DRIVERLOG shows a reduction of both precision and
recall.

Improvement Depots Driverlog Rovers Zenotravel Storage
Precision 40.57% -3.95% 4.10% 4.77% 49.63%
Recall 6.73% -15.95% 0.00% 13.91% 10.05%

Table 4: Differences in P+R if the initial probability distribution is used dur-
ing generation of a final hypothesis.

For some domains the risk of lowering of P+R is not preferable,



Domain hmax hff hcg Domain hff 25% hff 50% hff 75% hff 100%
Depots 0.22 / 0.3 0.22 / 0.28 0.22 / 0.28 Depots 0.15 / 0.07 0.2 / 0.21 0.34 / 0.5 0.52 / 0.93
Driverlog 0.42 / 0.32 0.47 / 0.32 0.47 / 0.32 Driverlog 0.43 / 0.12 0.56 / 0.29 0.72 / 0.5 0.94 / 0.73
Rovers 0.78 / 0.54 0.82 / 0.5 0.86 / 0.56 Rovers 0.62 / 0.22 0.81 / 0.42 0.93 / 0.66 0.96 / 1
Zenotravel 0.46 / 0.32 0.49 / 0.33 0.48 / 0.31 Zenotravel 0.3 / 0.1 0.42 / 0.26 0.61 / 0.48 0.81 / 0.7
Storage 0.19 / 0.42 0.22 / 0.39 0.22 / 0.39 Storage 0.17 / 0.14 0.29 / 0.49 0.27 / 0.64 0.3 / 0.91
Total 0.54 / 0.43 0.58 / 0.4 0.6 / 0.43 Average 0.33 / 0.13 0.46 / 0.33 0.57 / 0.56 0.7 / 0.85

Table 2: The total normalised intermediate precision and recall results for each heuristic, and the average precision and recall for hff
over all problems at 25%, 50%, 75% and 100% plan completion.

but in a situation where computing resources are limited and the do-
main is known to exhibit this property, it may be preferable to accept
a small loss in recall and save any processing-time related to the up-
dating of probabilities after each observation.

6 CONCLUSIONS AND FUTURE WORK
We have presented AUTOGRAPH, a new method of tackling Goal
Recognition by applying Planning technology. The approach and em-
pirical evidence presented has successfully shown that libraries are
not required to achieve online recognition of an agent’s activities.

The work presented offers a novel approach to the problem in the
form of heuristic estimation, as well as several new methods of refin-
ing valid goal facts. Perhaps most importantly it offers a viable so-
lution to the problem of offline library construction and allows any
domain to be recognised without prior analysis.

6.1 Strengths
AUTOGRAPH demonstrates an effective and efficient performance in
goal recognition. It is complete in the sense that it can construct a
hypothesis from any conjunction of literals within H. The system
is scalable because it is based on a 1st order approximation of the
true goal hypothesis, meaning that the hypothesis grows only lin-
early with the size of the grounded problem. Finally, it is domain-
independent because it only relies on the use of a standard problem
definition schema and use of generic heuristics and algorithms.

Several new and interesting aspects of GR have also been ob-
served. For example, the ability to accurately predict goals purely
from initial domain analysis and the current state is an interesting
avenue of research which could make the system more applicable in
low-resource environments.

6.2 Limitations
A drawback of the system is the inability to know if a hypothesis is
valid, due to the problem of detecting all mutually-exclusive proposi-
tions. The detection of these mutexes is an NP-Hard problem, mean-
ing that other methods must be used to estimate propositions which
cannot exist together in the same state. Undetectable mutexes are a
domain-specific feature, with only DEPOTS showing this trait from
the set of test domains. Future work will explore the approximation
of mutex information by recording facts which never appear together
during intermediate plan-states.

The current linear convergence rate of the recogniser is to be ex-
pected from the heuristic estimation process, but a faster convergence
rate would obviously be preferable. One method of increasing con-
vergence rates could be to rule out any facts which cannot be reached
within n steps, where n > |P |. However, in order to do this the prob-
lem of plan-length estimation would need to be solved first, along
with the detection of accurate goal-conjunctions. Additionally, au-
tomating the process of selecting initial probabilities for each parti-
tion and during updates on a domain-by-domain basis using a system
such as Hoos et al [16] would reveal the optimal set of values for
generating fast and accurate hypotheses.
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