Efficient data representation for
XML in peer-based systems

Brian Tripney, Christopher Foley, Richard Gourldghn Wilson

Department of Computer and Information Sciences
University of Srathclyde, Glasgow, UK

Abstract

Purpose — New directions in the provision of end-user cathpg experiences mean that we need to
determine the best way to share data between smobile computing devices. Partitioning large stooes

so that they can be shared efficiently provideasidfor data-intensive applications on such piaté The
partitioned structure can be compressed usingodiaty-based approaches and then directly querigabuti
firstly decompressing the whole structure.

Design/methodology/appr oach
We describe an architecture for partitioning XMlaistructural and dictionary elements and the sylpegt
manipulation of the dictionary elements to makeltbst use of available space.

Findings
The results indicate that considerable savingsaaeglable by removing duplicate dictionaries. Weoal
identify the most effective strategy for defininigttbnary scope.

Resear ch limitations/implications

Our evaluation is based on a range of benchmark Xtvlictures and the approach to minimising dictigna
size shows benefit in the majority of these. Wistractures are small and regular, the benefitdfifient
dictionary representation are lost. Our future aede now focuses on heuristics for further parntitig of
structural elements.

Practical implications

Mobile applications that need access to large daltactions will benefit from the findings of thissearch.
Traditional client/server architectures are noteslito dealing with high volume demands from a itude
of small mobile devices. Peer data sharing provalesore scalable solution and the experimentsvileat
describe demonstrate the most effective way ofispalata in this context.

Social implications

Many services are available via smartphone devingsusers are wary of exploiting the full potential
because of the need to conserve battery power.aPproach mitigates this challenge and consequently
expands the potential for users to benefit from ileabformation systems. This will have impact ireas
such as advertising, entertainment and educatibnvliudepend on the acceptability of file sharibging
extended from the desktop to the mobile environment

Originality/value

The original work we have done characterises thetraffective way of sharing large data sets between
small mobile devices. This will save battery powerdevices such as smartphones, thus providinditene
to users of such devices.

Keywords Peer-to-peer, Data compression, Database managdfménsible Markup Language
Paper type Research paper



1. Introduction

Growth in personal computer sales dropped almogeto in 2008. Meanwhile two
hundred million smartphones were sold, an increzs&3% on the previous year
(Meyer, 2009). Although smartphone sales are sekéeed personal computer sales,
2008 also saw the purchase of 1.22 billion mobit®res. Given the overlap of
functionality between these devices, there appstiisto be a significant potential
expansion available in the market for smartphoneicds. Smartphone users are
becoming accustomed to their needs for data bedtigfied on demand, thereby
presenting a wealth of fresh challenges for compsé&nce. In situations where a
plethora of small devices are operating in an Biftecture-light environment it is
more effective to share information between locabie peers and only involve a
central server as necessary. Location awarenesbeaised to ensure that the right
information is available at the right time.

This paper describes an architecture for shadarggl collections of semistructured
data between many small mobile devices with theaineducing their dependence on
fixed server infrastructure. It also reports ouplementation and evaluation of this
architecture. We expect that our work will conttdbio an understanding of query
processing and data management in XML data modwaticplarly in the framework
of location and context-aware applications andisesv

We start with a definition of the problem addressed show how research in
peer-to-peer database systems (PDBS), mobileadritbc networks (MANETS) and
semistructured data provides a basis for our apgprd&/e present the methodology of
our design and results that illustrate the potérdgfathis architecture. Finally we
characterise the research and development opptesittiat are made possible by our
investigation.

For many years, client-server models have domihale sharing of data in
Internet contexts. More recently, peer-to-peer (P@&a exchange has become a
widely used method of resolving the issues presehyeserver overload. Whilst this
helps to solve the problem of inadequate serveastfucture, typical conceptions of
P2P topologies are based on the dynamic creatiosd dfoc networks in a wired
world. Performance of such systems is always aawonbut given a balance between
the number of uploading and downloading peers dml dvailable bandwidth,
adequate response times can usually be supporiece Seers in this scenario are
typically desktop or laptop computers, the locatidrihe user is not significant in the
context of the data required.

We have already noted the remarkable growth imtiheber and power of small
mobile computing devices and the way that the egpiens of the user population
have similarly expanded. Tourism, advertising antegainment provide large-scale
application areas where users need access todocansitive data. Users increasingly
expect instant access to information on the mowmyelver storage restrictions
imposed by limited capability mobile devices preavéme preloading of large data
collections. On the other hand, partial disconmecintermittently prevents loading
the data from a server ‘on the fly'. In this cortexeither the client-server model nor
the conventional P2P sharing are efficient enough stipport data intensive
applications where large numbers of users demarekado large data collections.



We address this dilemma by using P2P distribusici,emes to share compressed,
partitioned XML. We arrange that queries over ttaga can be resolved without first
fully decompressing the complete structure. Thiemas knowledge in the area of
PDBS in the context of small mobile devices. Werabterise the most efficient way
of propagating the physical representation of sdata to peer devices that do not
already possess it, an issue that has been natjliectbe past. Without establishing
this, succeeding generations of smartphones wiliticoe to struggle with data
intensive applications.

We assume a partial disconnection model dominayegisconnection periods and
a class of applications in which localisation defirthe parts of a data collection of
greatest interest. Shoppers wanting to see produmiotions whilst on a busy
shopping street represent such a scenario. Fragthdotalised data is propagated
between shoppers’ phones or pulled if the shoppguested data not already present.
Fragments of the data are locally autonomous aedagsembly is managed by
federation, thereby avoiding the need for commumoawith a centralised directory
structure. During busy periods, the database flaitisin the phone population but is
never wholly resident on a single device. If thare few shoppers on the street, those
who want the data have to wait for a server conmeadr pay for data via GSM.
Although available bandwidth will grow in futuren approach such as ours will be
necessary to limit the effects of network congestidompression will also save CPU
cycles and consequently battery power; a signifi¢ature limiting factor for small
mobile devices.

Our approach to partitioning is an essential camepo of this scenario since small
partitions and their associated dictionaries canpb@pagated efficiently between
phones and queried without complete decompres3iba.decompression load then
becomes proportional to the size of the result 3éte partitions are logically
homogeneous so there is a strong likelihood thet geeries over data relevant to a
particular location can be satisfied without resauto pulling additional data from
other phones, making this approach the most effectiay of servicing shoppers’
needs during disconnection periods. Queries than gartitions are more expensive
but processing the incoming partition as a streaith improve the effective
performance of the system. The technique integraittssraw textual and multimedia
data. Query results over partitioned and comprested can be provided directly
where predicate values are contained in the parétl structures or indirectly where
reference needs to be made to underlying multim@dz

2. Related Work

Peer-to-peer database systems (PDBS) (Bomifati, 2008) have attracted significant
recent attention and have typically focused on tike of distributed hash tables
(Balakrishnanet al., 2003). Algebraic optimisations for managing dimtted XML
data structures have also been proposed (Koloaiadi Pitoura, 2005). There is
recognition that a variety of approaches may beessmsry to exploit various
communication architectures (Kangasharju and Tagd007). Simulation of client-
server and peer-to-peer networks suggest thatrbatks can provide similar end-user
download experience but that scaling in client-eesystems can only be addressed



by the additional expense of adding more serverd providing appropriate

management for these systems (Leibeital., 2007). Aygunet al. (2009) propose a

multilevel architecture for conceptualising P2P adananagement. Under this
architecture, a storage module is responsible &mdling the distributed elements of
the system, whilst an indexing module handles thatimg of queries within the

system.

Early work on different kinds of index structures XML focused on query
optimisation for the Lore system (McHugh and Widdr@99). The main thrust of this
work was the development of heuristics that deteemithen to use each of the four
specific forms of indices (value, text, link andtlpaindex) provided by their
experimental base. Buneman and co-workers (200@picee the XMill (Liefke and
Suciu, 2000) approach for compact representati@iarhic data with the approach for
skeleton compression by sharing sub-trees to asld¥ddL join queries. Their
fundamental assumption is that the skeleton ofcglpKML documents is small and
thus can be kept in memory. The actual data is oséd in the last stage of their join
algorithm, avoiding unnecessary /O operations. dduet al. (2004) extend their
original work (Kaushiket al., 2002) on structural indices for path expressitms
include keyword constraints on the contained atodsita. They propose a general
strategy to combine structural indices with inverlists in order to address this class
of queries efficiently. Other authors have explotteel compression of prior computed
query results in sharing complete XML structureat(¥etoiet al., 2007). Dictionary-
based approaches to compressing XML typically famugag compression (Ariogt
al., 2007). Alternative approaches involve the useabfema information to drive the
compression (Bttcher et al., 2007). In earlier work, we investigated the ude o
dictionary compression techniques for represenbnth tags and values in XML
structures (Neumdillegt al., 2003; Gourlayet al., 2007) and other investigators have
also examined the decomposition of XML into arragéd structures (Bunemetal.,
2005).

Schemes that use bitmap or entropy coding are Rrtowmprove the processing
of relational data (Cocksho#tt al., 1998; Stonebrakeet al., 2005). Dictionary
compression can be satisfactorily combined withcttrral indexing by using a hybrid
data structure (Wilsogt al., 2006) and has been used with mobile client systiyat
refresh themselves from a central server (Natclettali., 2007). The need to process
large structures that may not fit into main membas led to the development of
interest in XML stream processing (Schneider, 2088) there is evidence that
compressed streams of XML are accessible to queogepsing (Bttcher and
Steinmetz, 2007). Energy usage, communication badvwand storage have been
identified as the main parameters affecting thenacio (Wolfsoret al., 2007). Peer-
to-peer systems eschew central control in favoua ahodel in which functionally
equivalent elements operate in a distributed enm@nt. This provides benefits such
as permanence, anonymity and search capability Vewéhe basic operation is the
location of data elements (Wehrle & Steinmetz, 2008hilst there are many open
research questions in the domain of peer-basedmgstthe autonomy that they
typically provide potentially reduces the necesi&itymanagement overhead (Daswani
etal., 2003).



Figure 1.
Device relationships

Our contribution is the adaptation of bisimilaritgdexing techniques to the
generation of partitioned XML structures and thee wf dictionary compression
methods to render the most efficient representatioh such data. This presents
particular benefits for small mobile devices thae asharing data in peer-based
environments.

3. Model

A simplified analytical model (Qiu and Srikant, 20@an be used to assess the impact
of data compression in peer-based architecturesudh a system, there will inevitably
be users who will share the data elements theyegesand those for whom the
technical or economic benefits that are availaldeaaconsequence of sharing are
insufficient to persuade them to take part (leechdhe BitTorrrent model of
incentivization promotes sharing by down-grading skrvice to those who don't share
and improving service to those who are willing tishsoftware that will perform P2P
sharing. Incentivization can also be provided bipgisnicropayment models to offset
the potential for increased call charges. Howewsr,with all P2P-based systems,
leeches are likely to be a persistent feature ®fetvironment. The scenario involves
devices that upload only (seeds), download onlgcfies) and both upload and
download (peers). The relationships between thésdskof devices are shown in
Figure 1.

Each queue consists of a list of tasks and a séuveupload, d - download). The
gueues form a closed queuing network i.e. the sydtas no source or sink. The
model is simplified by assuming that all peers hagaal capacity both to upload and
download and that in a steady state, the numbeupdbads and downloads is
independent of time. The model incorporates randbuann of the peer pool via the off
line rate ) and the abort ratep). These are expressed as a rate correction to the
upload rate ) and download rater) respectively. The model is represented by the
expressions shown in Figure 1. Little’s Law (Liftl&961) is used to produce the
service time (t) experienced by users waiting foe tompletion of downloads (3).
Compressing data provides leverage for both upématidownload and is incorporated
into the model by the coefficiefit

|' : L

wabort/resume’

. "

~..ponfoffline -




~

effective upload rate 1 1 1 1
, — 1
selfish rate / 1—ﬁ( j @

nominal upload rate

off line rate

bottleneck bandwidth E = ma{_ 1_j5 (2)
download bandwidth usage by each pger ¢

TR R [

)

abort rate

SYR IS

compression ratio t= 1 ®

service time g+p

—

Assuming a nominal upload bandwidil) ©f 12Mbits/sec, off line ratex of 50
Mbits/sec, individual peer download bandwidth us@gef 20 Mbits/sec and an abort
rate p) of 10 Mbits/sec, the analytical model producesnetes of service time
shown in Figure 3. It can be seen that an incrgaséffish rate increases the expected
download time for other peers but that this is abermbly mitigated by the effect of
compression. Similarly, at a fixed selfish rates #ffective download bandwidth is
improved by increasing compression.

This model predicts that compressing data impreggsice to users irrespective
of the number of leeches in the system. In additmrthese beneficial effects of
compression, the effect of partitioning data sutes so that only limited relevant data
is sent between peers, results in additional savifis further reduction will provide
more efficient use of bandwidth and better resdeerno high selfish rates than is
predicted by the analytical model. Since the numbiervailable peers varies in
inverse proportion to the number of leeches, thelehalso suggests that peer pool
variations will be mitigated by compressing data.

Compressing data provides a useful step in empogvepplications running on
phones to rapidly receive large volumes of dataesponse to requests from users.
Efficient processing of XML is helped by choosirwe tright physical data structures
and supporting them with appropriate indexing téghes. Bisimilarity (i.e. the
sharing of common subtrees) allows resolution dh pacation steps in linear time
(Kaushiket al., 2004). A family of indexes ((j,k)-F+B-index) cée constructed using
a range of values for forward or backward bisiniyarEmbedding the structural
elements of queries into such an index graph cadope using the same algorithms
that could be used to embed them into a data gréipd.structural elements of the
guery can be resolved against the index graphheubtiginal data graph needs to be
maintained in order to resolve value predicates.

Queuing model for
P2P data sharing



Figure 3.
Performance
characteristics of the
gueuing model

The approach we have developed (NSGraph) (Wiktoal., 2006) constructs
atomic data dictionaries according to the strud¢tgraupings. Consequently the part
of the dictionary corresponding to a structuralugiog can be incorporated into the
node of the index graph representing it. The veitentifiers used in both the
dictionaries and the index graph can be replacét the entries based on a numbering
scheme, creating a unique address space for \alid@urposes. This approach
produces a hybrid that represents the cross-prafuant index graph with a signature
tree where its leaf nodes are replaced by domaimodaries. Figure 4 illustrates this
using the (1,1)-F+B-index graph of the example Batgph on the left. This approach
allows queries to be resolved directly on the caaped data structure with only the
returned values being decompressed. In broad tetrasutility of bisimilarity as a
means of partitioning data is that elements areggd into logically coherent sets. For
example, from Figure 4, the (1,1)-F+B-index willogp all name elements together
since they have a common ancestor at one levékehigp the treepérson) and a
common descendent (a data node). In a (1,2)-F+Bxirttis group would be split

because of the incoming edge fraditor which is within the span of two backward
nodes.
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Memory-boundness is a significant limitation of Gi@ph. Our initial
implementation requires the complete graph and absociated leaf values to be
present in memory. Dictionary compression and fragtation of the compressed
XML tree reduces the size of the data structuré tieads to be held in memory. The
NSIndex extension builds on the NSGraph model tppstting non-volatile storage
of the resulting structure and providing for itsedit interrogation.

This approach gives the advantage of not havingatse and store the entire data
structure in memory in order to evaluate a quesywall as giving opportunities for
optimisations of the data structure.

4. System Overview

The system architecture of NSindex is split int@éhmajor modules shown in Figure
5. The NSGraph module processes the underlyingceodML data structure
generating a structural summarisation and assaociddéa representation. This model
of the source is fed into NSStore where the merbaiged structure is mapped to the
non-volatile structure seen in the lower part @fufe 5. The NSQuery system can be
used to directly read the non-volatile structurd aliow for the evaluation of arbitrary
queries.



Figureb.
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The source data structure is processed by the &@Gmodule, first building a
DataGraph type structure and then applying paniitip based on the concept of
bisimilarity. Elements are grouped according toirthesimilar properties and held
within the multi-element vectors of the NSGraphustare. A numbering scheme is
applied to retain the information previously recady the DataGraph edges.

To facilitate non-volatile storage of the struelusummarisation, the NSStore
component maps the vectors to a block-based staelgeme. The record for each
entry within a Block consists of its pre-order itléer within the numbering scheme,
its post-order identifier, the level (or depth)tie graph structure, and the size of the
entry (including its subordinates).

A specialised type of Block, a DataBlock, is ataomer for data elements, each
represented as pre-order, post-order, level ara tgether with a token to indicate
the raw data value contained in the appropriatéotiary. All data elements in one
DataBlock will use the same dictionary.

Additional processing can be used to reduce reahmd in the set of data
dictionaries produced by NSIindex. Two methods ameently employed to thin out
the dictionaries. First, any exact duplicate dicéides are removed, updating the
dictionary references at a DataBlock level to pdimtthe remaining copy. In the
example shown in Figure 6, Dictionary 3 is remowedit is an exact duplicate of
Dictionary 1. DataBlock C (which previously refadrto Dictionary 1) is then updated
to make use of Dictionary 1.
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The second method searches for subset dictionatiegse whose data values are
wholly contained within another dictionary of thense token size. Where a subset is
found, any references to that dictionary are regalaby references to the superset
dictionary, and the data tokens of each elemerhinvithe affected DataBlock are
updated to reflect the new dictionary used. Thishewn in the example by the
removal of Dictionary 4 and the update of DataBl@cto use Dictionary 2.

Following this thinning process, any individuattibnary may be used by a large
number of DataBlocks. This results in significaatiags in the number of dictionaries
required.

5. Experimental Evaluation
Initial work on NSGraph (Wilsoret al., 2006) examined the effects of applying
different partitioning schemes to a number of datas Each file was partitioned using
varying levels of forward and backward bisimilarand the number of vertices and
edges in the resulting NSGraph variations were t@ulin

To evaluate the architecture we chose benchmatksels that represent both
randomly generated and real world data. In additierselected structures that contain

both regular and irregular branching patterns. @htasets used are summarised in
Table 1.

Figure6.
Dictionary thinning
process



Table 1. Summary
of benchmark

datasets.

Table 2.

Effects of structural
summarisation

Regular Irregular

Random Orders (a subset of the | XMark benchmark (10Mb and

TPC-H benchmark). 30Mb).
Real world Legal (conviction details | NASA (astronomical data),

from a sentencing Medline (a 20Mb section of medica

information system). bibliographic database).

DataGraph| (0,0)F+B (0,1)F+B (1,00F+B (1,1)F4B DBata

vertices 920678 44 83 101 3151 Legal
edges 920677 82 82 1656 3150Legal
vertices 285004 14 23 14 2B Orders
edges 285003 22 22 22 2P Orders
vertices 951681 76 217 986 90403NASA
edges 951680 159 216 957p 90402NASA
vertices 997830 86 118 1112 77255Medline
edges 997829 160 187 117109 772%Medline
vertices 319741 78 933 7091 1229¢4XMark10
edges 319740 150 932 34237 12296XMark10
vertices 1010413 79 993 15258 31818XMark30
edges 1010412 159 992 80240 31818XMark30

Table 2 shows the results for selected partitigriohemes. Comparison between
the DataGraph and (F+B) index graph for each dasisewvs that the vertex and edge
count increases with increasing levels of bisintyarDespite this, the counts for the
index graphs are less than those for the DataGagfitese levels of bisimilarity. The
extent of the structural summarisation indicateat tbompression is available by
limiting storage only to values that are charastariof each node.

Variation in the level of forward and backward tgaming affects the number of
dictionaries produced, since each dictionary represa single vertex. The datasets
were partitioned in sixteen ways using a versiorthef NSGraph program - these
ranged from (0,0)-F+B (O-forward and O-back, paming solely on data label) to
(3,3)-F+B. This produced a set of uncompressed Bdatks for each partitioning
scheme.

The unique values from each DataBlock were théraeted and used to calculate
the size of data and dictionaries under a mininitaldkken scheme. For each dataset,
the total size of uncompressed blocks is unaffebiethe partitioning scheme used (as
the complete set of blocks will contain all theadahlues regardless of how these are
distributed across blocks). However, the comprestaid size is affected by the
distribution of data values, as the success ofntiremal-bit scheme relies upon the
repetition of values within individual blocks.

For all but one of the datasets tested, compnessi&s improved by increasing
backward bisimilarity from (0,0)-F+B to (0,1)-F+Bhe graph in Figure 7 shows that



in the best case an additional 15% compressiorobtned over the Legal dataset. In
the worst case, XMark30 showed an adverse effe@ofas a result of the change.
This is a result of the pseudo-random nature oftétxé within the XMark datasets,

which leads to little repetition within the DataBlc.
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Figure7.
Effects of backward
bisimilarity on size.

Figure8.
Effects of forward
bisimilarity on size.



Further increases in backward bisimilarity hadligge effect upon compression,
with only one dataset showing a slight compresseel isicrease of less than 0.1%
between (0,1)-F+B and (0,2)-F+B).

In terms of forward bisimilarity, the move to (J-/A+B (where n >= 1) tended to
produce an adverse effect on the compressed sgeréR8) — up to 10% in the worst
case (Medline dataset). Adding an extra discrinoindb the partitioning process
generally causes the data to be split into a langenber of blocks, this often means
that individual data values will appear in a higimemmber of data dictionaries than
they did without forward bisimilarity and conseqtlgrihe overall dictionary size will
increase. However this increase can be offset &yifie of smaller tokens to represent
the data values of these smaller dictionaries,ihggth a reduction in DataBlock size.
It can be seen that there is in fact an overallitfgrovement in compression for the
NASA dataset as a result of adding forwards bisiriti}.

With no great benefit shown by partitioning usif@grward bisimilarity, and
noticeably improved compression shown only when ingpwp to one level of
backward bisimilarity, it would appear that thel()of-+B partitioning scheme allows
for greatest compression with least effort. Howeweth a view to sharing the data in
individual blocks, the overall size is only one simieration — the number of blocks the
data is split into is also a factor, as fewer bfoakll necessarily be larger blocks.

In all cases the increase in backward bisimilafityn (0,0)-F+B to (0,1)-F+B
produces a slightly increased number of blocksuileg). The effects of changing
forward bisimilarity are greater, with a changenfr@0,n)-F+B to (1,n)-F+B (where n
>= 1) results in a considerable increase the nunabdrlocks for some data sets
(Figure 10). It follows that partitioning the datdo different numbers of blocks will
cause the overall compression level for that datehtange, as the higher the number
of blocks the data is split into, the less likelyis that repeated items will be found
within a single block. This accounts for the in@e#n data sizes shown in Figure 8 as,
especially for the Medline, XMark10 and XMark30 akstts, these are accompanied
by a significant increase in the number of blocks.

It is noted that there is a level of forward arathkward bisimilarity beyond which
no significant changes are made to either the cessed size or the number of data
blocks. This is caused by the fairly flat, regudahema of the test datasets. Files with a
deeper tree structure are expected to show furdiemges in partitioning as
bisimilarity is increased.

We consider that generally (1,1)-F+B is a reastmebmpromise between level of
compression and number of blocks produced. Thexdtue remainder of the results
shown below are obtained using that partitionirftesee as a basis.
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Figure 11.
Thinning effect on
no. of dictionaries

As explained in the system overview section, aoiai# processing can be applied
to the dictionaries produced by NSIndex to redwshundancy by removing duplicate
and subset dictionaries. This thinning process doand removed redundancy in all
datasets with the exception of Orders, which duistdlat structure is comprised of
only ten dictionaries. Figure 11 shows the reduciio the overall number of files
caused by dictionary thinning in the other datasktshe most successful case, the
Medline dataset, only 29% of the dictionaries pemtl were retained after the
thinning process. In the worst case XMark10 rethi8% of dictionaries after
thinning.
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The consequent effects on overall dictionary siee shown in Figure 12. The
results for these datasets correlate closely vighreduction in dictionary numbers.
However this may not necessarily be the case fpifature datasets, as any reduction
of overall file size will be dependent on the sizgfsthe individual dictionaries
removed.

Full results of the thinning process are showiiable 3. As may be expected, the
greatest savings are to be made over the real wWathkets, as these are more likely to
have repeated values compared with the generatezthivark data. The results show
that thinning the dictionaries after partitioningnchave considerable benefit in terms
of data storage.
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Data source
Reduction in Reduction in
number of files| dictionary size on
disk
Legal 67% 64%
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6. Conclusion and Future Work

The purpose of the read-only data architecture wWeathave designed is to partition
large XML structures so that they can be sharecerafficiently between small mobile
devices such as smartphones. This is achievedihy &3B-indexing to characterise
the partitions produced. Our experimental work &sgg that the (1,1)-F+B-index
presents the best possibilities in the contexhefwaried benchmark datasets we have
used. Furthermore, we have found that useful savoan be made by combining
dictionary structures so that redundant collectiaresexcluded. We have verified that
the process of excluding such dictionaries presetkie direct query capability that
enables queries to be resolved without firstly depssing the whole data structure.
This functionality is of significant advantage ihet design of mobile information
systems that operate on small computing devicds asismartphones. In this context,
peer data sharing for applications such as adiragtisnd entertainment will require



significant changes in user behaviour. However, glidential benefits that are
available support the expectation that such changesome about. The approach to
data representation that we describe offers a wayirimising the data transfer costs
that are implicit in such a model and at the sam treduces battery usage by
supporting query resolution directly on compresdat structures.

Our results suggest that bisimilarity providesasib for partitioning large data
structures so that they can be compressed effigiemhe need to process large
structures that may not fit into main memory haktte the development of interest in
XML stream processing and the potential for comgrdsstreams of XML to be made
accessible to query processing. Stream processihgravide better response times
for our target class of applications and we plaestplore the use of this approach in
conjunction with sharing both dictionary and blanformation. Security and integrity
of data in such an environment are important issus$ we plan to address the
implications of authentication, access controly@cy and encryption.

We are further investigating the potential foritsiplg unusually large dictionaries
and other methods of recombining small dictionat@esptimise the use of minimal-
bit tokens. We are also planning to evaluate tterish of the partitioned elements
between devices in the context of location-baséd. da
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