
Efficient data representation for
XML in peer-based systems

Brian Tripney, Christopher Foley, Richard Gourlay, John Wilson
Department of Computer and Information Sciences

University of Strathclyde, Glasgow, UK

Abstract
Purpose – New directions in the provision of end-user computing experiences mean that we need to
determine the best way to share data between small mobile computing devices. Partitioning large structures
so that they can be shared efficiently provides a basis for data-intensive applications on such platforms. The
partitioned structure can be compressed using dictionary-based approaches and then directly queried without
firstly decompressing the whole structure.

Design/methodology/approach
We describe an architecture for partitioning XML into structural and dictionary elements and the subsequent
manipulation of the dictionary elements to make the best use of available space.

Findings
The results indicate that considerable savings are available by removing duplicate dictionaries. We also
identify the most effective strategy for defining dictionary scope.

Research limitations/implications
Our evaluation is based on a range of benchmark XML structures and the approach to minimising dictionary
size shows benefit in the majority of these. Where structures are small and regular, the benefits of efficient
dictionary representation are lost. Our future research now focuses on heuristics for further partitioning of
structural elements.

Practical implications
Mobile applications that need access to large data collections will benefit from the findings of this research.
Traditional client/server architectures are not suited to dealing with high volume demands from a multitude
of small mobile devices. Peer data sharing provides a more scalable solution and the experiments that we
describe demonstrate the most effective way of sharing data in this context.

Social implications
Many services are available via smartphone devices but users are wary of exploiting the full potential
because of the need to conserve battery power. Our approach mitigates this challenge and consequently
expands the potential for users to benefit from mobile information systems. This will have impact in areas
such as advertising, entertainment and education but will depend on the acceptability of file sharing being
extended from the desktop to the mobile environment.

Originality/value
The original work we have done characterises the most effective way of sharing large data sets between
small mobile devices. This will save battery power on devices such as smartphones, thus providing benefits
to users of such devices.

Keywords Peer-to-peer, Data compression, Database management, Extensible Markup Language
Paper type Research paper

1. Introduction
Growth in personal computer sales dropped almost to zero in 2008. Meanwhile two
hundred million smartphones were sold, an increase of 13% on the previous year
(Meyer, 2009). Although smartphone sales are set to exceed personal computer sales,
2008 also saw the purchase of 1.22 billion mobile phones. Given the overlap of
functionality between these devices, there appears still to be a significant potential
expansion available in the market for smartphone devices. Smartphone users are
becoming accustomed to their needs for data being satisfied on demand, thereby
presenting a wealth of fresh challenges for computer science. In situations where a
plethora of small devices are operating in an infrastructure-light environment it is
more effective to share information between local mobile peers and only involve a
central server as necessary. Location awareness can be used to ensure that the right
information is available at the right time.
 This paper describes an architecture for sharing large collections of semistructured
data between many small mobile devices with the aim of reducing their dependence on
fixed server infrastructure. It also reports our implementation and evaluation of this
architecture. We expect that our work will contribute to an understanding of query
processing and data management in XML data models particularly in the framework
of location and context-aware applications and services.
 We start with a definition of the problem addressed and show how research in
peer-to-peer database systems (PDBS), mobile and ad hoc networks (MANETs) and
semistructured data provides a basis for our approach. We present the methodology of
our design and results that illustrate the potential of this architecture. Finally we
characterise the research and development opportunities that are made possible by our
investigation.
 For many years, client-server models have dominated the sharing of data in
Internet contexts. More recently, peer-to-peer (P2P) data exchange has become a
widely used method of resolving the issues presented by server overload. Whilst this
helps to solve the problem of inadequate server infrastructure, typical conceptions of
P2P topologies are based on the dynamic creation of ad hoc networks in a wired
world. Performance of such systems is always a concern but given a balance between
the number of uploading and downloading peers and the available bandwidth,
adequate response times can usually be supported. Since peers in this scenario are
typically desktop or laptop computers, the location of the user is not significant in the
context of the data required.
 We have already noted the remarkable growth in the number and power of small
mobile computing devices and the way that the expectations of the user population
have similarly expanded. Tourism, advertising and entertainment provide large-scale
application areas where users need access to location sensitive data. Users increasingly
expect instant access to information on the move, however storage restrictions
imposed by limited capability mobile devices prevent the preloading of large data
collections. On the other hand, partial disconnection intermittently prevents loading
the data from a server ‘on the fly’. In this context, neither the client-server model nor
the conventional P2P sharing are efficient enough to support data intensive
applications where large numbers of users demand access to large data collections.

 We address this dilemma by using P2P distribution schemes to share compressed,
partitioned XML. We arrange that queries over this data can be resolved without first
fully decompressing the complete structure. This extends knowledge in the area of
PDBS in the context of small mobile devices. We characterise the most efficient way
of propagating the physical representation of such data to peer devices that do not
already possess it, an issue that has been neglected in the past. Without establishing
this, succeeding generations of smartphones will continue to struggle with data
intensive applications.
 We assume a partial disconnection model dominated by disconnection periods and
a class of applications in which localisation defines the parts of a data collection of
greatest interest. Shoppers wanting to see product promotions whilst on a busy
shopping street represent such a scenario. Fragmented localised data is propagated
between shoppers’ phones or pulled if the shopper requested data not already present.
Fragments of the data are locally autonomous and the assembly is managed by
federation, thereby avoiding the need for communication with a centralised directory
structure. During busy periods, the database flows within the phone population but is
never wholly resident on a single device. If there are few shoppers on the street, those
who want the data have to wait for a server connection or pay for data via GSM.
Although available bandwidth will grow in future, an approach such as ours will be
necessary to limit the effects of network congestion. Compression will also save CPU
cycles and consequently battery power; a significant future limiting factor for small
mobile devices.
 Our approach to partitioning is an essential component of this scenario since small
partitions and their associated dictionaries can be propagated efficiently between
phones and queried without complete decompression. The decompression load then
becomes proportional to the size of the result set. The partitions are logically
homogeneous so there is a strong likelihood that user queries over data relevant to a
particular location can be satisfied without recourse to pulling additional data from
other phones, making this approach the most effective way of servicing shoppers’
needs during disconnection periods. Queries that span partitions are more expensive
but processing the incoming partition as a stream will improve the effective
performance of the system. The technique integrates with raw textual and multimedia
data. Query results over partitioned and compressed data can be provided directly
where predicate values are contained in the partitioned structures or indirectly where
reference needs to be made to underlying multimedia files.

2. Related Work
Peer-to-peer database systems (PDBS) (Bonifati et al., 2008) have attracted significant
recent attention and have typically focused on the use of distributed hash tables
(Balakrishnan et al., 2003). Algebraic optimisations for managing distributed XML
data structures have also been proposed (Koloniari and Pitoura, 2005). There is
recognition that a variety of approaches may be necessary to exploit various
communication architectures (Kangasharju and Tarkoma, 2007). Simulation of client-
server and peer-to-peer networks suggest that both routes can provide similar end-user
download experience but that scaling in client-server systems can only be addressed

by the additional expense of adding more servers and providing appropriate
management for these systems (Leibnitz et al., 2007). Aygün et al. (2009) propose a
multilevel architecture for conceptualising P2P data management. Under this
architecture, a storage module is responsible for handling the distributed elements of
the system, whilst an indexing module handles the routing of queries within the
system.
 Early work on different kinds of index structures for XML focused on query
optimisation for the Lore system (McHugh and Widom, 1999). The main thrust of this
work was the development of heuristics that determine when to use each of the four
specific forms of indices (value, text, link and path index) provided by their
experimental base. Buneman and co-workers (2003) combine the XMill (Liefke and
Suciu, 2000) approach for compact representation of atomic data with the approach for
skeleton compression by sharing sub-trees to address XML join queries. Their
fundamental assumption is that the skeleton of typical XML documents is small and
thus can be kept in memory. The actual data is only used in the last stage of their join
algorithm, avoiding unnecessary I/O operations. Kaushik et al. (2004) extend their
original work (Kaushik et al., 2002) on structural indices for path expressions to
include keyword constraints on the contained atomic data. They propose a general
strategy to combine structural indices with inverted lists in order to address this class
of queries efficiently. Other authors have explored the compression of prior computed
query results in sharing complete XML structures (Natchetoi et al., 2007). Dictionary-
based approaches to compressing XML typically focus on tag compression (Arion et
al., 2007). Alternative approaches involve the use of schema information to drive the
compression (Bőttcher et al., 2007). In earlier work, we investigated the use of
dictionary compression techniques for representing both tags and values in XML
structures (Neumüller et al., 2003; Gourlay et al., 2007) and other investigators have
also examined the decomposition of XML into array-based structures (Buneman et al.,
2005).
 Schemes that use bitmap or entropy coding are known to improve the processing
of relational data (Cockshott et al., 1998; Stonebraker et al., 2005). Dictionary
compression can be satisfactorily combined with structural indexing by using a hybrid
data structure (Wilson et al., 2006) and has been used with mobile client systems that
refresh themselves from a central server (Natchetoi et al., 2007). The need to process
large structures that may not fit into main memory has led to the development of
interest in XML stream processing (Schneider, 2003) and there is evidence that
compressed streams of XML are accessible to query processing (Bőttcher and
Steinmetz, 2007). Energy usage, communication bandwidth and storage have been
identified as the main parameters affecting this scenario (Wolfson et al., 2007). Peer-
to-peer systems eschew central control in favour of a model in which functionally
equivalent elements operate in a distributed environment. This provides benefits such
as permanence, anonymity and search capability however, the basic operation is the
location of data elements (Wehrle & Steinmetz, 2005). Whilst there are many open
research questions in the domain of peer-based systems, the autonomy that they
typically provide potentially reduces the necessity for management overhead (Daswani
et al., 2003).

 Our contribution is the adaptation of bisimilarity indexing techniques to the
generation of partitioned XML structures and the use of dictionary compression
methods to render the most efficient representations of such data. This presents
particular benefits for small mobile devices that are sharing data in peer-based
environments.

3. Model
A simplified analytical model (Qiu and Srikant, 2004) can be used to assess the impact
of data compression in peer-based architectures. In such a system, there will inevitably
be users who will share the data elements they possess and those for whom the
technical or economic benefits that are available as a consequence of sharing are
insufficient to persuade them to take part (leeches). The BitTorrrent model of
incentivization promotes sharing by down-grading the service to those who don’t share
and improving service to those who are willing to host software that will perform P2P
sharing. Incentivization can also be provided by using micropayment models to offset
the potential for increased call charges. However, as with all P2P-based systems,
leeches are likely to be a persistent feature of the environment. The scenario involves
devices that upload only (seeds), download only (leeches) and both upload and
download (peers). The relationships between these kinds of devices are shown in
Figure 1.
 Each queue consists of a list of tasks and a server (u - upload, d - download). The
queues form a closed queuing network i.e. the system has no source or sink. The
model is simplified by assuming that all peers have equal capacity both to upload and
download and that in a steady state, the number of uploads and downloads is
independent of time. The model incorporates random churn of the peer pool via the off
line rate (κ) and the abort rate (ρ). These are expressed as a rate correction to the
upload rate (µ) and download rate (τ) respectively. The model is represented by the
expressions shown in Figure 1. Little’s Law (Little, 1961) is used to produce the
service time (t) experienced by users waiting for the completion of downloads (3).
Compressing data provides leverage for both upload and download and is incorporated
into the model by the coefficient δ.

Figure 1.
Device relationships

service timet

compression ratioδ

abort rateρ

download bandwidth usage by each peerτ

bottleneck bandwidthθ

off line rateκ

nominal upload rateµ

selfish rateβ

effective upload rateι

)3(
1

)2(
1

,
1

max
1

)1(
11

1

11

ρθ

δ
ιτθ

κµβι

+
=

=

 −
−

=

t

 Assuming a nominal upload bandwidth (µ) of 12Mbits/sec, off line rate (κ) of 50
Mbits/sec, individual peer download bandwidth usage (τ) of 20 Mbits/sec and an abort
rate (ρ) of 10 Mbits/sec, the analytical model produces estimates of service time
shown in Figure 3. It can be seen that an increasing selfish rate increases the expected
download time for other peers but that this is considerably mitigated by the effect of
compression. Similarly, at a fixed selfish rate, the effective download bandwidth is
improved by increasing compression.
 This model predicts that compressing data improves service to users irrespective
of the number of leeches in the system. In addition to these beneficial effects of
compression, the effect of partitioning data structures so that only limited relevant data
is sent between peers, results in additional savings. This further reduction will provide
more efficient use of bandwidth and better resilience to high selfish rates than is
predicted by the analytical model. Since the number of available peers varies in
inverse proportion to the number of leeches, the model also suggests that peer pool
variations will be mitigated by compressing data.
 Compressing data provides a useful step in empowering applications running on
phones to rapidly receive large volumes of data in response to requests from users.
Efficient processing of XML is helped by choosing the right physical data structures
and supporting them with appropriate indexing techniques. Bisimilarity (i.e. the
sharing of common subtrees) allows resolution of path location steps in linear time
(Kaushik et al., 2004). A family of indexes ((j,k)-F+B-index) can be constructed using
a range of values for forward or backward bisimilarity. Embedding the structural
elements of queries into such an index graph can be done using the same algorithms
that could be used to embed them into a data graph. The structural elements of the
query can be resolved against the index graph but the original data graph needs to be
maintained in order to resolve value predicates.

Figure 2.
Queuing model for

P2P data sharing

 The approach we have developed (NSGraph) (Wilson et al., 2006) constructs
atomic data dictionaries according to the structural groupings. Consequently the part
of the dictionary corresponding to a structural grouping can be incorporated into the
node of the index graph representing it. The vertex identifiers used in both the
dictionaries and the index graph can be replaced with the entries based on a numbering
scheme, creating a unique address space for validation purposes. This approach
produces a hybrid that represents the cross-product of an index graph with a signature
tree where its leaf nodes are replaced by domain dictionaries. Figure 4 illustrates this
using the (1,1)-F+B-index graph of the example DataGraph on the left. This approach
allows queries to be resolved directly on the compressed data structure with only the
returned values being decompressed. In broad terms, the utility of bisimilarity as a
means of partitioning data is that elements are grouped into logically coherent sets. For
example, from Figure 4, the (1,1)-F+B-index will group all name elements together
since they have a common ancestor at one level higher up the tree (person) and a
common descendent (a data node). In a (1,2)-F+B-index this group would be split
because of the incoming edge from editor which is within the span of two backward
nodes.

Figure 3.
Performance
characteristics of the
queuing model

 Memory-boundness is a significant limitation of NSGraph. Our initial
implementation requires the complete graph and the associated leaf values to be
present in memory. Dictionary compression and fragmentation of the compressed
XML tree reduces the size of the data structure that needs to be held in memory. The
NSIndex extension builds on the NSGraph model by supporting non-volatile storage
of the resulting structure and providing for its direct interrogation.
 This approach gives the advantage of not having to parse and store the entire data
structure in memory in order to evaluate a query, as well as giving opportunities for
optimisations of the data structure.

4. System Overview
The system architecture of NSIndex is split into three major modules shown in Figure
5. The NSGraph module processes the underlying source XML data structure
generating a structural summarisation and associated data representation. This model
of the source is fed into NSStore where the memory-based structure is mapped to the
non-volatile structure seen in the lower part of Figure 5. The NSQuery system can be
used to directly read the non-volatile structure and allow for the evaluation of arbitrary
queries.

Figure 4.
DataGraph and

NSGraph

NSGraph

NSStore

NSQuery

Preprocessed
file

Block

Dictionary

DataBlock

XML user

 The source data structure is processed by the NSGraph module, first building a
DataGraph type structure and then applying partitioning based on the concept of
bisimilarity. Elements are grouped according to their bisimilar properties and held
within the multi-element vectors of the NSGraph structure. A numbering scheme is
applied to retain the information previously recorded by the DataGraph edges.
 To facilitate non-volatile storage of the structural summarisation, the NSStore
component maps the vectors to a block-based storage scheme. The record for each
entry within a Block consists of its pre-order identifier within the numbering scheme,
its post-order identifier, the level (or depth) in the graph structure, and the size of the
entry (including its subordinates).
 A specialised type of Block, a DataBlock, is a container for data elements, each
represented as pre-order, post-order, level and size, together with a token to indicate
the raw data value contained in the appropriate dictionary. All data elements in one
DataBlock will use the same dictionary.
 Additional processing can be used to reduce redundancy in the set of data
dictionaries produced by NSIndex. Two methods are currently employed to thin out
the dictionaries. First, any exact duplicate dictionaries are removed, updating the
dictionary references at a DataBlock level to point to the remaining copy. In the
example shown in Figure 6, Dictionary 3 is removed as it is an exact duplicate of
Dictionary 1. DataBlock C (which previously referred to Dictionary 1) is then updated
to make use of Dictionary 1.

Figure 5.
NSIndex component
architecture

Stewart

Smith

Miller

Stewart

Smith

Miller

Programming

Databases

Databases

DataBlocks

A

B

C

D

Stewart

Smith

Miller

Stewart

Smith

Miller

Programming

Databases

Databases

DataBlocks

A

B

C

D

Dictionaries Dictionaries

1

2

4

3

1

2

subset of
dictionary 2

duplicate of
dictionary 1

Before Thinning After Thinning

 The second method searches for subset dictionaries – those whose data values are
wholly contained within another dictionary of the same token size. Where a subset is
found, any references to that dictionary are replaced by references to the superset
dictionary, and the data tokens of each element within the affected DataBlock are
updated to reflect the new dictionary used. This is shown in the example by the
removal of Dictionary 4 and the update of DataBlock D to use Dictionary 2.
 Following this thinning process, any individual dictionary may be used by a large
number of DataBlocks. This results in significant savings in the number of dictionaries
required.

5. Experimental Evaluation
Initial work on NSGraph (Wilson et al., 2006) examined the effects of applying
different partitioning schemes to a number of datasets. Each file was partitioned using
varying levels of forward and backward bisimilarity and the number of vertices and
edges in the resulting NSGraph variations were counted.
 To evaluate the architecture we chose benchmark datasets that represent both
randomly generated and real world data. In addition we selected structures that contain
both regular and irregular branching patterns. The datasets used are summarised in
Table 1.

Figure 6.
Dictionary thinning

process

 Regular Irregular
Random Orders (a subset of the

TPC-H benchmark).
XMark benchmark (10Mb and
30Mb).

Real world Legal (conviction details
from a sentencing
information system).

NASA (astronomical data),
Medline (a 20Mb section of medical
bibliographic database).

 DataGraph (0,0)F+B (0,1)F+B (1,0)F+B (1,1)F+B Dataset
vertices 920678 44 83 101 3151 Legal
edges 920677 82 82 1656 3150 Legal
vertices 285004 14 23 14 23 Orders
edges 285003 22 22 22 22 Orders
vertices 951681 76 217 986 90403 NASA
edges 951680 159 216 9572 90402 NASA
vertices 997830 86 118 1112 77255 Medline
edges 997829 160 187 11719 77254 Medline
vertices 319741 78 933 7091 122964 XMark10
edges 319740 150 932 34237 122963 XMark10
vertices 1010413 79 993 15258 318184 XMark30
edges 1010412 159 992 80240 318183 XMark30

 Table 2 shows the results for selected partitioning schemes. Comparison between
the DataGraph and (F+B) index graph for each dataset shows that the vertex and edge
count increases with increasing levels of bisimilarity. Despite this, the counts for the
index graphs are less than those for the DataGraph at these levels of bisimilarity. The
extent of the structural summarisation indicates that compression is available by
limiting storage only to values that are characteristic of each node.
 Variation in the level of forward and backward partitioning affects the number of
dictionaries produced, since each dictionary represents a single vertex. The datasets
were partitioned in sixteen ways using a version of the NSGraph program - these
ranged from (0,0)-F+B (0-forward and 0-back, partitioning solely on data label) to
(3,3)-F+B. This produced a set of uncompressed DataBlocks for each partitioning
scheme.
 The unique values from each DataBlock were then extracted and used to calculate
the size of data and dictionaries under a minimal-bit token scheme. For each dataset,
the total size of uncompressed blocks is unaffected by the partitioning scheme used (as
the complete set of blocks will contain all the data values regardless of how these are
distributed across blocks). However, the compressed data size is affected by the
distribution of data values, as the success of the minimal-bit scheme relies upon the
repetition of values within individual blocks.
 For all but one of the datasets tested, compression was improved by increasing
backward bisimilarity from (0,0)-F+B to (0,1)-F+B. The graph in Figure 7 shows that

Table 2.
Effects of structural
summarisation

Table 1. Summary
of benchmark
datasets.

in the best case an additional 15% compression was obtained over the Legal dataset. In
the worst case, XMark30 showed an adverse effect of 6% as a result of the change.
This is a result of the pseudo-random nature of the text within the XMark datasets,
which leads to little repetition within the DataBlocks.

Figure 7.
Effects of backward
bisimilarity on size.

Figure 8.
Effects of forward

bisimilarity on size.

 Further increases in backward bisimilarity had negligible effect upon compression,
with only one dataset showing a slight compressed size increase of less than 0.1%
between (0,1)-F+B and (0,2)-F+B).
 In terms of forward bisimilarity, the move to (1,n)-F+B (where n >= 1) tended to
produce an adverse effect on the compressed size (Figure 8) – up to 10% in the worst
case (Medline dataset). Adding an extra discriminator to the partitioning process
generally causes the data to be split into a larger number of blocks, this often means
that individual data values will appear in a higher number of data dictionaries than
they did without forward bisimilarity and consequently the overall dictionary size will
increase. However this increase can be offset by the use of smaller tokens to represent
the data values of these smaller dictionaries, leading to a reduction in DataBlock size.
It can be seen that there is in fact an overall 1% improvement in compression for the
NASA dataset as a result of adding forwards bisimilarity.
 With no great benefit shown by partitioning using forward bisimilarity, and
noticeably improved compression shown only when moving up to one level of
backward bisimilarity, it would appear that the (0,1)-F+B partitioning scheme allows
for greatest compression with least effort. However, with a view to sharing the data in
individual blocks, the overall size is only one consideration – the number of blocks the
data is split into is also a factor, as fewer blocks will necessarily be larger blocks.
 In all cases the increase in backward bisimilarity from (0,0)-F+B to (0,1)-F+B
produces a slightly increased number of blocks (Figure 9). The effects of changing
forward bisimilarity are greater, with a change from (0,n)-F+B to (1,n)-F+B (where n
>= 1) results in a considerable increase the number of blocks for some data sets
(Figure 10). It follows that partitioning the data into different numbers of blocks will
cause the overall compression level for that data to change, as the higher the number
of blocks the data is split into, the less likely it is that repeated items will be found
within a single block. This accounts for the increase in data sizes shown in Figure 8 as,
especially for the Medline, XMark10 and XMark30 datasets, these are accompanied
by a significant increase in the number of blocks.
 It is noted that there is a level of forward and backward bisimilarity beyond which
no significant changes are made to either the compressed size or the number of data
blocks. This is caused by the fairly flat, regular schema of the test datasets. Files with a
deeper tree structure are expected to show further changes in partitioning as
bisimilarity is increased.
 We consider that generally (1,1)-F+B is a reasonable compromise between level of
compression and number of blocks produced. Therefore the remainder of the results
shown below are obtained using that partitioning scheme as a basis.

Figure 9.
Effects of backward
bisimilarity on block

numbers

Figure 10.
Effects of forward

bisimilarity on block
numbers

 As explained in the system overview section, additional processing can be applied
to the dictionaries produced by NSIndex to reduce redundancy by removing duplicate
and subset dictionaries. This thinning process found and removed redundancy in all
datasets with the exception of Orders, which due to its flat structure is comprised of
only ten dictionaries. Figure 11 shows the reduction in the overall number of files
caused by dictionary thinning in the other datasets. In the most successful case, the
Medline dataset, only 29% of the dictionaries produced were retained after the
thinning process. In the worst case XMark10 retained 68% of dictionaries after
thinning.

 The consequent effects on overall dictionary size are shown in Figure 12. The
results for these datasets correlate closely with the reduction in dictionary numbers.
However this may not necessarily be the case for any future datasets, as any reduction
of overall file size will be dependent on the sizes of the individual dictionaries
removed.
 Full results of the thinning process are shown in Table 3. As may be expected, the
greatest savings are to be made over the real world datasets, as these are more likely to
have repeated values compared with the generated benchmark data. The results show
that thinning the dictionaries after partitioning can have considerable benefit in terms
of data storage.

Figure 11.
Thinning effect on
no. of dictionaries

 Reduction in
number of files

Reduction in
dictionary size on

disk
Legal 67% 64%
Orders 0% 0%
NASA 56% 55%
Medline 71% 69%
XMark10 32% 32%
XMark30 39% 39%

6. Conclusion and Future Work

The purpose of the read-only data architecture that we have designed is to partition
large XML structures so that they can be shared more efficiently between small mobile
devices such as smartphones. This is achieved by using F+B-indexing to characterise
the partitions produced. Our experimental work suggests that the (1,1)-F+B-index
presents the best possibilities in the context of the varied benchmark datasets we have
used. Furthermore, we have found that useful savings can be made by combining
dictionary structures so that redundant collections are excluded. We have verified that
the process of excluding such dictionaries preserves the direct query capability that
enables queries to be resolved without firstly decompressing the whole data structure.
This functionality is of significant advantage in the design of mobile information
systems that operate on small computing devices such as smartphones. In this context,
peer data sharing for applications such as advertising and entertainment will require

Figure 12.
Thinning effect on

total dictionary size

Table 3.
Consequences of

thinning on
dictionary files.

significant changes in user behaviour. However, the potential benefits that are
available support the expectation that such changes will come about. The approach to
data representation that we describe offers a way of minimising the data transfer costs
that are implicit in such a model and at the same time reduces battery usage by
supporting query resolution directly on compressed data structures.
 Our results suggest that bisimilarity provides a basis for partitioning large data
structures so that they can be compressed efficiently. The need to process large
structures that may not fit into main memory has led to the development of interest in
XML stream processing and the potential for compressed streams of XML to be made
accessible to query processing. Stream processing will provide better response times
for our target class of applications and we plan to explore the use of this approach in
conjunction with sharing both dictionary and block information. Security and integrity
of data in such an environment are important issues and we plan to address the
implications of authentication, access control, privacy and encryption.
 We are further investigating the potential for splitting unusually large dictionaries
and other methods of recombining small dictionaries to optimise the use of minimal-
bit tokens. We are also planning to evaluate the sharing of the partitioned elements
between devices in the context of location-based data.

References

Arion, A., Bonifati, A., Manolescu, I., and Pugliese, A. (2007), “XQueC: A query-conscious compressed
XML database”, ACM Transactions on Internet Technology, Vol. 7, No. 2, Art. 10.

Aygűn, B.T., Ma, Y., Akkaya, K., Cox, G., and Bicak, A. (2009), “A conceptual model for data
management and distribution in peer-to-peer systems”, Peer-to-Peer Networking and Applications,
available at: http://www.springerlink.com/content/2n67v1279t780347/ (accessed March 2010).

Balakrishnan, H., Kaashoek, M., Karger, D., Morris, R.t and Stoica, I. (2003), “Looking up data in P2P
systems”, Communications of the ACM, Vol. 46, No. 2, pp 43-48.

Böttcher, S. and Steinmetz, R. (2007). “Evaluating XPath queries on XML data streams”, in Data
Management: Data, Data Everywhere, 24th British National Conference on Databases, BNCOD 24,
Glasgow, UK, July 3-5, 2007., Springer-Verlag, London, pp. 101-113.

Böttcher, S., Steinmetz, R., and Klein, N. (2007), “XML index compression by DTD subtraction, in
Proceedings of the Ninth International Conference on Enterprise Information Systems, Volume DISI,
Funchal, Madeira, Portugal, June 12-16, 2007., Springer-Verlag, Vienna, pp. 86-94.

Bonifati, A., Chrysanthis P.K., Ouksel, A.M., Sattler, K-U. (2008), “Distributed databases and peer-to-peer
databases: past and present”, SIGMOD Record, Vol. 37, No. 1, pp. 5-11.

Buneman, P., Grohe, M. and Koch, C. (2003), “Path Queries on Compressed XML”, in Proceedings of 29th
International Conference on Very Large Data Bases, September 9-12, 2003, Berlin, Germany., Morgan
Kaufmann, San Francisco, pp. 141-152.

Buneman, P., Choi, B., Fan, W., Hutchison, R., Mann, R. and Viglas, S. (2005), “Vectorizing and Querying
Large XML Repositories”, in Proceedings of the 21st International Conference on Data Engineering,
ICDE 2005, 5-8 April 2005, Tokyo, Japan., IEEE Computer Society, pp. 261-272.

Cockshott, W.P., McGregor, D., Wilson, J. (1998), “High-Performance Operations Using a Compressed
Database Architecture”, in The Computer Journal, Vol. 41, No. 5, pp. 283-296.

Daswani, N., Garcia-Molina, H., and Yang, B. (2003), “Open Problems in Data-Sharing Peer-to-Peer
Systems”, in Proceedings of the 9th International Conference on Database Theory, Siena, Italy,
January 8-10, 2003., Springer-Verlag, London, pp. 1-15.

Gourlay, R., Tripney, B., Wilson, J.N. (2007), “Compressed Materialised Views of Semi-Structured Data”,
In Workshop Proceedings of the 24th British National Conference on Databases, BNCOD 2007,
University of Glasgow, UK, 3-5 July 2007., IEEE Computer Society, pp. 75-82.

Kangasharju, J. and Tarkoma, S. (2007), “Benefits of alternate XML serialization formats in scientific
computing”, In Proceedings of the 2007 Workshop on Service-Oriented Computing Performance:
aspects, issues, and approaches, ACM, New York, pp. 23-30.

Kaushik, R., Krishnamurthy, R., Naughton, J.F. and Ramakrishnan, R. (2004), “On the Integration of
Structure Indexes and Inverted Lists”, In Proceedings of the 20th International Conference on Data
Engineering, ICDE 2004, 30 March - 2 April 2004, Boston, MA, USA., IEEE Computer Society, p.
829.

Kaushik, R., Shenoy, P., Bohannon, P. and Gudes, E. (2002). “Exploiting local similarities for indexing
paths in graph-structured data”, in Proceedings of the 18th International Conference on Data
Engineering, 26 February - 1 March 2002, San Jose, CA., IEEE Computer Society, Washington, pp.
129-140.

Koloniari, G. and Pitoura, E. (2005), “Peer-to-peer management of XML data: issues and research
challenges”, SIGMOD Record, Vol. 34, No. 2, pp. 6-17.

Liebnitz, K., Hoßfeld, T., Wakamiya, N. and Murata, M. (2007), “Peer-to-Peer vs. Client/Server: Reliability
and Efficiency of a Content Distribution Service”, In Managing Traffic Performance in Converged
Networks, 20th International Teletraffic Congress, ITC20 2007, Ottawa, Canada, June 17-21, 2007,
Proceedings., Springer LNCS, Germany, pp. 1161-1172.

Leifke, H. and Suciu, D. (2000), “XMILL: An Efficient Compressor for XML Data”, In Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data, May 16-18, 2000, Dallas,
Texas, USA., ACM, New York, pp. 153-164.

Little, J. D. C. (1961), “A Proof of the Queueing Formula L = λ W”, Operations Research, 9, 383-387

McHugh, J., and Widom, J. (1999), “Query optimization for XML”, in Proceedings of the 25th
International Conference on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland,
UK., Morgan Kaufmann, Orlando, FL., pp. 315-326.

Meyer, D. (2009), “Gartner sees slowdown in smartphone sales growth”, available at:
http://www.zdnetasia.com/news/communications/0,39044192,62052144,00.htm (accessed 17 February
2010).

Natchetoi, Y., Wu, H., Babin, G. and Dagtas, S. (2007), “EXEM: Efficient XML data exchange
management for mobile applications”, Information Systems Frontiers, Vol. 9, No. 4, pp. 439-448.

Neumüller, M., and Wilson, J. N. (2003), “Improving XML Processing Using Adapted Data Structures”, in
Web, Web-Services, and Database Systems, NODe 2002 Web- and Database-Related Workshops,
Erfurt, Germany, October 7-10, 2002., Springer, Berlin, pp. 206-220.

Qiu, D., Srikant, R. (2004), “Modeling and performance analysis of BitTorrent-like peer-to-peer networks”,
In Proceedings of the ACM SIGCOMM 2004 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, August 30 - September 3, 2004, Portland,
Oregon, USA., ACM, New York, pp. 367-378.

Schneider. J. (2003), “Theory, benefits and requirements for efficient encoding of XML documents”, in
W3C w3c-binary-workshop, available at: http://www.w3.org/2003/08/binary-interchange-
workshop/30-agiledelta-Efficient-updated.html (accessed March 2010).

Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden,
S., O'Neil, E., O'Neil, P., Rasin, A., Tran, N., and Zdonik, S. (2005), “C-Store: A Column-oriented
DBMS”, in Proceedings of the 31st Very Large Data Bases, Trondheim, Norway, August 30 -
September 2, 2005., Morgan Kaufmann, Orlando, FL., pp. 553-564.

Wilson, J.N., Gourlay, R., Japp, R., Neumüller, M (2006), “A Resource Efficient Hybrid Data Structure for
Twig Queries”, in Database and XML Technologies, 4th International XML Database Symposium,
XSym 2006, Seoul, Korea, September 10-11, 2006, Proceedings., Springer LNCS, Germany, pp. 77-91.

Wehrle, K., and Steinmetz, R. (2005), “What Is This Peer-to-Peer About?”, Wehrle, K., and Steinmetz, R.,
Peer-to-Peer Systems and Applications, Springer, Berlin, pp 9-16.

Wolfson, O., Xu, B. and Tanner, R. (2007). "Mobile Peer-to-peer Data Dissemination with Resource
Constraints", Proceedings of the 8th International Conference on Mobile Data Management,
Mannheim, Germany, May 2007, IEEE Computer Society, Washington, pp. 16-23.

