Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Analysis of shaped pulse transitions in power electronic switching waveforms for reduced EMI generation

Oswald, Niall and Stark, Bernard and Holliday, Derrick and Hargis, Colin and Drury, Bill (2011) Analysis of shaped pulse transitions in power electronic switching waveforms for reduced EMI generation. IEEE Transactions on Industry Applications, 47 (5). 2154 - 2165. ISSN 0093-9994

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Consideration of the higher-order time derivatives of voltage and current transitions in power semiconductor devices enables the specification of S-shaped switching waveforms which offer an improved trade-off between highfrequency EMI generation and switching losses. In comparison with the widely-used first-order derivative trapezoidal switching waveform approximation, Fourier analysis of the proposed Sshaped waveform shows that it exhibits a 20 dB/decade steeper spectral gradient at high frequencies, resulting in a 20 dB greater reduction in high-frequency spectral content per decade increase in rise time. Numerical analysis of the proposed waveform shows that both peak and total RF power, employed as indicative EMI metrics, are reduced significantly with no increase in overall switching time. Experimental investigation of the effect of introducing a frequency-selective EMI transmission path shows that the overall trends in the relationships between time-domain waveform parameters and high-frequency spectral content are maintained, whilst the values of the waveform timing parameters which minimise the two EMI metrics are changed.