Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Progress in defining the biological causes of schizophrenia

Pickard, Benjamin (2011) Progress in defining the biological causes of schizophrenia. Expert Reviews in Molecular Medicine, 13 (e25). e25.

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Schizophrenia is a common mental illness resulting from a complex interplay of genetic and environmental risk factors. Establishing its primary molecular and cellular aetiopathologies has proved difficult. However, this is a vital step towards the rational development of useful disease biomarkers and new therapeutic strategies. The advent and large-scale application of genomic, transcriptomic, proteomic and metabolomic technologies are generating data sets required to achieve this goal. This discovery phase, typified by its objective and hypothesis-free approach, is described in the first part of the review. The accumulating biological information, when viewed as a whole, reveals a number of biological process and subcellular locations that contribute to schizophrenia causation. The data also show that each technique targets different aspects of central nervous system function in the disease state. In the second part of the review, key schizophrenia candidate genes are discussed more fully. Two higher-order processes - adult neurogenesis and inflammation - that appear to have pathological relevance are also described in detail. Finally, three areas where progress would have a large impact on schizophrenia biology are discussed: deducing the causes of schizophrenia in the individual, explaining the phenomenon of cross-disorder risk factors, and distinguishing causative disease factors from those that are reactive or compensatory.