
23Analysis and Fast Implementation ofOversampled Modulated Filter BanksStephan WeissDept. Eletronis & Computer Siene, University of Southampton, UKAbstrat. Oversampled modulated �lter banks (OSFBs) are popularly employed fora number of appliations suh as aousti eho anellation in order to redue the pro-essing omplexity of a signal proessing algorithm. Hene, an eÆient implementationof OSFBs themselves is mandatory. In this paper, a polyphase desription is used toremove redundanies in the �lter operations and to fatorise the OSFB into �lter om-ponents depending on the prototype �lter, and the modulating transform. Based ona state-spae representation of this derived polyphase fatorisation, signal ow graphsan be obtained whih permit a very simple and eÆient OSFB implementation. Theanalysis is performed for a number of di�erent lasses of OSFBs, and a omparison toexisting methods is drawn.1 IntrodutionOversampled �lter banks (OSFBs) �nd a wide range of appliations, where om-putational redutions for resoure-demanding signal proessing algorithms aresought by means of subband approahes. Examples inlude subband adaptive�lters used in aousti eho ontrol [1; 2℄, line enhanement [3℄, or beamform-ing [4℄. Another use of OSFBs are, for example, transmultiplexers for the trans-mission of several users over a single hannel [5℄. Partiularly in the light ofomputational eÆieny, simple low omplexity realisations for the �lter banksthemselves are therefore desirable. Despite this motivation and in ontrast totheir ritially deimated ounterparts [6; 7℄, numerially eÆient implementa-tions of non-ritially sampled (or \oversampled") �lter banks have reeived littleattention.A simple �lter bank system giving K subband signals deimated by N � Kis shown in Fig. 1. An eÆient implementation is based on modulation of all Kanalysis �lters Hk(z) and all synthesis �lter Gk(z) from one prototype �lter [8℄.For OSFBs with non-ritial deimation N < K, an eÆient implementationhas been reported by Wakersreuther [9℄, where a time domain approah leads
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Fig. 1. Analysis and synthesis �lter bank for subband deomposition of X(z).to a fatorisation of the analysis �lter bank operation into a �ltering operationlinked to the prototype �lter oeÆients, a ylial shift, and the appliationsof the appropriate modulating transform (e.g. a DFT). A similar approah re-sulting in a di�erent sequene of exeution is presented in [10; 5℄, with a time-varying exitation of di�erent omponents of the prototype �lter followed by themodulating transform. More reently, polyphase fatorisations in the z-domainhave been presented [11; 12℄, whih also permit a separation into �ltering op-erations based on the prototype �lter, and the modulating transform. For allases [9; 10; 11; 12; 5℄, a dual implementation an be found for the synthesis�lter bank operation.The polyphase approah [11; 12℄ an be utilised as a starting point to derive a�lter bank fatorisation yielding a very simple and low ost implementation [13℄.Here, this fatorisation is generalised to arbitrary length prototype �lters andarbitrary modulations, for whih the analysis and fatorisation is presented inSetion 2. Based on a state-spae representation of the OSFB operations inSetion 3, signal ow graphs for analysis and synthesis �lter bank are derivedin Setion 4. Further, in the latter the implementation and omputational om-plexity of the resulting iruits is disussed and ompared to existing methods.In our notation, boldfae upperase variables are matrix valued, boldfaelowerase or upperase underlined quantities refer to vetor valued variables.An N�N identity matrix is denoted by IN , an N�M matrix with zero elementsby 0N�M .2 Filter Bank Analysis2.1 Polyphase NotationLet us onsider the analysis �lter bank of Fig. 1 produing K subband signals.To exploit omputational redundanies arising from the deimation by N , apolyphase desription is utilized [7℄. A polyphase notation for the kth analysis�lters, Hk(z) = N�1Xn=0 z�nHkjn(zN ) ; (2.1)
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Fig. 2. Analysis �lter bank with demultiplexer and H(z) desribing an N �KMIMO system.produes a deomposition into N type-I polyphase omponents Hkjn(z) [7℄. Sim-ilarly, the input signalX(z) is deomposed into N type-II polyphase omponentsXn(z), X(z) = N�1Xn=0 z�N+n�1Xn(zN ) : (2.2)If the polyphase omponents are organised in vetor form,Hk(z) = �Hkj0(z) Hkj1(z) � � � HkjN�1(z)�T (2.3)X(z) = [X0(z) X1(z) � � � XN�1(z)℄T (2.4)a subband signal Yk(z) an be denoted asYk(z) = HTk (z) �X(z) : (2.5)For ompatibility, in the following we assume that �lters are always subjetedto type-I and signals to type-II polyphase deompositions.2.2 Analysis Filter BankFor a ompat notation of the analysis �lter bank operations, the K subbandsignals are olleted in a vetor Y (z) = [Y0(z) Y1(z) � � � YK�1(z)℄T. Inserting(2.5) gives Y (z) = �H0(z) H1(z) � � � HK�1(z)�T �X(z) (2.6)= H(z) �X(z) ; (2.7)where H(z) 2 CK�N (z) is the polyphase analysis matrix [11℄. With the desrip-tion (2.7), the analysis �lter bank in Fig. 1 an be implemented by a demul-tiplexer followed by a linear time-invariant multi-input multi-output (MIMO)system H(z) as shown in Fig. 2. We are now interested in a partiular fatori-sation of H(z).It is assumed that the analysis �lters are FIR with Lp oeÆients, and derivedfrom a prototype �lter P (z) by modulation. With the oeÆients of the kthanalysis �lter organised in a vetor hk 2 C Lp ,hk = �hk[0℄ hk[1℄ � � � hk[Lp�1℄�T ; (2.8)
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Fig. 3. (a) Even staked and (b) odd staked K-hannel �lter bank.the polyphase omponents in (2.3) an be written asHk(z) = �IN z�1IN � � � z�bLp=N+1IN z�bLp=NIR0N�R�R �| {z }LT1 (z) �hk (2.9)where IN is an N �N identity matrix, b� the oor operator, and R = modNLpthe remainder of the division of the �lter length Lp by the deimation fatorN . The dependeny of Hk(z) on the underlying prototype �lter with oeÆientsp[i℄, i = 0 : : : Lp�1 is inorporated ashk = 26664 p[0℄ 0p[1℄ . . .0 p[Lp�1℄ 37775| {z }P �26664 tk[0℄tk[1℄...tk[Lp�1℄ 37775| {z }tk ; (2.10)based on the generally omplex modulation sequene ontained in tk 2 C Lp . Thematrix P 2 RLp�Lp is a diagonal matrix holding the prototype �lter oeÆients.Depending on whih modulation is invoked for the �lter bank, di�erent pe-riodiities of the sequene tk[i℄, i = 0 : : : Lp�1, result. If the �lter bank is evenstaked as shown in Fig. 3(a), the periodiity is K. In this ase, a ompatnotation of the modulation sequene an be foundtk = �IK IK � � � IK IS0K�S�S �| {z }LT2 T � ~tk ; (2.11)where ~tk 2 CK , L2 2 NLp�K , and S = modKLp. Odd-staked �lter banksas in Fig. 3(b) exhibit a 2K periodiity of tk[i℄. Additional symmetries in the



Analysis and Fast Implementation of Oversampled Modulated Filter Banks 267modulation sequene an however be exploited by alternating sign hanges onbloks of K oeÆients,tk = [IK �IK IK �IK � � � ℄T � ~tk : (2.12)Instead of modifying the matrix L2 of odd staked �lter banks, this sign hangean be inorporated into P in (2.10) and hene the prototype �lter P (z) | atrik that is also known from disrete osine transform implementations [7℄. It isassumed that for odd staked �lter banks suh a modi�ation of the prototype�lter is performed by negating the oeÆients' signs in every seond K-blok ofoeÆients. With this assumptions, in the following even and odd staked �lterbanks an be treated alike using (2.11).The modulation sequenes ~tk, k = 0 : : :K�1, are olleted in a matrixT = [~t0 � � � ~tK�1℄T 2 CK�K (2.13)whih for example for a DFT modulated �lter bank would be a K-point DFTmatrix. Applying (2.13) to the substitution of (2.11) and (2.10) into (2.6) givesH(z) = T � L2 �P � L1(z) (2.14)as notation for the polyphase analysis matrix. With (2.14) a fatorisation intoprototype �lter omponents and a rotation by a transform matrix T has beenestablished similar to [11; 12℄. The di�erene is that the diagonal matrix Pontains no sparse �lters but only the prototype �lter oeÆients, whih will beexploited for the implementation in Setion 4.2.3 Synthesis Filter BankDual to the analysis �lter bank, the synthesis �lter bank as shown in Fig. 1upsamples the subband signals by a fator N and applies interpolation �ltersGk(z). The ondition that all �lters Gk(z) and Hk(z) are derived from the sameprototype lowpass �lter and that the �lter bank is perfetly reonstruting isguaranteed by H(z) being paraunitary [11℄. Reonstrution is then given bythe polyphase synthesis matrix G(z) 2 CN�K (z), whih is the parahermitian ofH(z), and relates the subband samples bak to the polyphase omponents of thefullband signal, X̂(z) = G(z) � Y (z) : (2.15)For ausality, a delay has to be introdued suh that X̂(z) = z�Lp+1 �X(z) inFig. 1. In the N -polyphase domain, this is expressed as [7℄X̂(z) = � 0N�R�R z�bLp=N+1 � IN�Rz�bLp=N � IR 0R�N�R �| {z }�(z) �X(z) : (2.16)
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Fig. 4. Synthesis �lter bank with G(z) desribing a K�N MIMO system fol-lowed by a multiplexer.Inorporating this delay into the perfet reonstrution ondition, G(z) �H(z) =�(z), the polyphase synthesis matrix is given byG(z) = �(z) �HH(z�1) (2.17)= �(z) � LT1 (z�1) �P � LT2 �TH : (2.18)Evaluating �(z) � LT1 (z�1) in (2.18) givesL̂T1 (z) = �(z) � LT1 (z�1) = LT1 (z) � JLp ; (2.19)where JLp is an Lp�Lp reverse identity matrix left-right ipping the ausalmatrix LT1 (z). The polyphase synthesis matrix in (2.18) leads to the signalow graph in Fig. 4 with the MIMO system G(z) followed by a multiplexer.Its funtionality is idential to the original synthesis �lter bank in Fig. 1, butmultipliations with expanding zeros in the interpolations �lters are avoided.Paraunitarity of H(z) is equivalent to the �lter bank implementing a tightframe deomposition, whih o�ers useful properties suh as a �xed energy rela-tion between the fullband signal X(z) and the subband samples in Y (z). In amore general ase, Hk(z) and Gk(z) an be based on di�erent prototype low-pass �lters (with di�erent oeÆients or even �lter lengths) and therefore the�lter bank system is not neessarily perfetly reonstruting. In this ase thefatorisation of the polyphase analysis matrix remains as in Setion 2.2, whilethe fatorial matries of G(z) in (2.18) are built aordingly, whereby the pa-rameters of the synthesis prototype �lter have to be applied for L1(z), P, andL2.3 Canonial State-Spae RepresentationsBefore trying to �nd suitable implementations for the previously fatorised �l-ter bank operations, anonial state-spae representations for Figs. 2 and 4 arederived in this setion. These representations take the form� zW (z)V (z) � = � A BC D � � � W (z)U(z) � ; (3.1)A ow graph of (3.1) is given in Fig. 5. Appropriate system matries A, B, C,D, a state vektor W (z), input U(z) and output V (z) need to be de�ned in thefollowing.
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BFig. 5. Flow graph of state-spae representation with states W (z).3.1 Analysis Filter Bank RepresentationFor the analysis �lter bank, U(z) ontains N demultiplexed samples of the inputsignal (i.e. U(z) = X(z), the output V (z) = Y (z) holds the K subband signals.For a anonial form, the state vetorW (z) must not have more than Lp�N ele-ments and an be found by reformulating the analysis operation by introdutionof an intermediate variable Q(z):Y (z) = T � L2 �P �Q(z) with Q(z) = L1(z) �X(z) (3.2)Q(z) = � 0N�Lp�N 0N�NILp�N 0Lp�N�N � z�1 �Q(z) + � IN0Lp�N�N �X(z) : (3.3)With the reursive update in (3.3), the lower portion with Lp�N elements ofQ(z) now forms the state vetor W (z), and the state spae system matries anbe identi�ed asA = � 0N�Lp�2N 0N�NILp�2N 0Lp�2N�N � B = � IN0Lp�2N�N � (3.4)C = T � L2 �P � � 0N�Lp�NILp�N � D = T � L2 �P � � IN0Lp�N�N � : (3.5)Note that all memory exhibiting matries in (2.14) have been replaed by mem-oryless operations due to the reursive updating in (3.1).3.2 Synthesis Filter Bank RepresentationFor the synthesis, the input in Fig. 5 now ontains the K subband samples,U(z) = Y (z), whih are used for the reonstrution of N polyphase omponentsof the fullband signal X̂(z), held in the output V (z) = X̂(z). A suitable statevetor W (z) is sought from (2.18) with (2.19) inserted:X̂(z) = L̂T1 (z) �P � LT2 �TH � Y (z) = �0N�Lp�N IN � �Q(z) (3.6)Q(z) = �0N�Lp�N 0N�NILp�N 0Lp�N�N � z�1 �Q(z) + P�LT2 �TH �Y (z) (3.7)The upper Lp�N elements of the intermediate variable Q(z) form the statevetor W (z), whih together with the reursive formulation (3.7) gives rise to



270 S. Weissthe following state-spae matries:A = �0N�Lp�2N 0N�NILp�2N 0Lp�2N�N � B = � ILp�N 0Lp�N�N ��P�LT2 �TH (3.8)C = � 0N�Lp�2N IN � D = � 0N�Lp�N IN ��P�LT2 �TH (3.9)The system matries A in both (3.4) and (3.8) represent tapped delay lines(TDL), in whih the state values are shifted by N states for every update itera-tion.4 Filter Bank ImplementationBased on the fatorisations in Setion 2 and the state-spae representations inSetion 3, we now aim to �nd signal ow graphs that provide simple and eÆientOSFB implementations.4.1 Analysis Filter Bank ImplementationInspeting (3.4) and (3.5), the analysis �lter bank operation in (2.14) an beexeuted in two steps. As mentioned above, the state values from a TDL, whihis shifted by A and updated with N fresh samples in every subband samplingperiod by B. Hene, C and D are exited by Lp�N old and N urrent inputsamples inW (z) and U(z), respetively. Due the similiarity of C and D, a singleTDL [UT(z) WT(z)℄T holding a total of Lp urrent and past input samples anbe assembled. The result is the ow graph in Fig. 6. There, the demultiplexingof the salar OSFB input into N parallel samples in U(z) as shown in Fig. 2 isalready inorporated into the TDL.Aording to (3.5), in Fig. 6 the TDL vetor [UT(z) WT(z)℄T is passed intothe blok P, multiplying eah value by a prototype �lter oeÆients p[i℄. Fromthe results, L2 reates K subsummations. After rotated of these subsums by themodulation matrix T, �nally a set of K subband samples has been alulated.Note, that the only memory-exhibiting operation in this analysis �lter bankrealisation is the TDL holding Lp samples of the input signal. The numberof states has inreased by N over the anonial state-spae representation in(3.4) and (3.5) due to the inlusion of the demultipled of Fig. 2. Therefore withrespet to the overall iruit running at the fullband rate, the iruit in Fig. 6 isanonial.4.2 Synthesis Filter Bank ImplementationLet us onsider the system matries B and D de�ned for the synthesis OSFBin (3.8) and (3.9), respetively, and the state-spae representation in Fig. 5. Itis obvious that the subband samples in U(z) = Y (z) are derotated by TH anddupliated to Lp values by LT2 to �nally exite the Lp prototype �lter oeÆientsin P. Of these Lp produts, the upper Lp�N values are lathed by B onto theTDL implemented by A in (3.8). The lower N produt values are added withthe lower N elements of the state vetor to form the output V (z) = X̂(z).Inorporating the multiplexing of the output X̂(z) to X̂(z), the TDL struture



Analysis and Fast Implementation of Oversampled Modulated Filter Banks 271

21demux /

(z)Y1

(z)Y0

(z)YK-1

L -1p

p

N

N

N

N

N

N

N

N

p2K-1

p2K

K+1p

pK-1

pK

p1

p0(z)X

L(z)L

1

2

S

K

T
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Fig. 7. Synthesis �lter bank signal ow graph.of Fig. 3(b) arises. A GDFT matrix generally permits a fatorisationT = D1 �TDFT �D2 : (4.1)For an odd staked �lter bank, all matries are K � K and D1 and D2 havediagonal form if inversion of the signs of prototype oeÆients are performed asdisussed in Setion 2.2 [12℄.EÆient implementations make use of an FFT routine instead of performingTDFT as a matrix operation. Further, if the input signal X(z) is real valued, (i)all operations exept the transform matrix an be performed with real arithmetiand (ii) redundanies arise due to approximately half of the subband signalsbeing omplex onjugate opies of others. Hene about half (depending on theDFT/GDFT transform and K being odd or even) of the subbands do not needto be alulated nor proessed.Single sideband (SSB) modulated OSFBs for real valued subband signals anbe obtained by modi�ation of a GDFT modulated �lter bank deimated by onlyN=2 [8℄. An additional omplex modulation is performed on the subband signalsY (z) followed by a real operation. On the synthesis side, this is ompensated bya mathing demodulation prior to feeding into a GDFT synthesis �lter bank.



Analysis and Fast Implementation of Oversampled Modulated Filter Banks 273Table 1 Computational Complexity of Filter Banks ImplementationsCreal / [MACs℄ Complex / [MACs℄DFT 1N (Lp + 4K log2K) 1N (2Lp + 4K log2K)GDFT 1N (Lp + 4K log2K + 4K) 1N (2Lp + 4K log2K + 8K)SSB 2N (Lp + 4K log2K + 5K) 2N (2Lp + 4K log2K + 10K)4.4 Computational ComplexityFrom the signal ow graphs for analysis and synthesis in Figs. 6 and 7, theomputational omplexities for both operations an be evaluated in terms ofmultiply-aumulates (MACs) per sampling period. The latter is the period ofthe fullband signals prior analysis or after synthesis. The omplexities are givenin Tab. 1 and are idential for analysis and synthesis, but di�er for the hoie ofT and depend on whether the input signal is real or omplex valued. Note, thatthe multipliation of the omplex samples with the real valued prototype �lteroeÆients arues to 2Lp MACs. The modulation matrix TDFT is assumedto be implemented by a K-point FFT requiring 4K log2K real valued MACs,whih is invariably applied for all types of �lter banks.Although a number of methods reported in the literature give idential om-plexities in terms of MACs, the realisations in Figs. 6 and 7 do not require anyadditional time-varying irular shifts [9℄ or swithing [5℄, the indexing of time-varying �lters [10℄, or �lters with sparse oeÆients [11; 12℄. Further, the signalow graphs in Figs. 6 and 7 only require a single irular bu�er and hene aminimum amount of pointers for addressing, and permit an arbitrary prototype�lter length Lp independent of both the deimation ratio N and the hannelnumber K.5 ConlusionOversampled �lter banks where all �lters are derived from a prototype �lter bymodulation have been analysed using the well-known polyphase deomposition.Similar to previous analyses in the literature, this deomposition was fatorisedto redue all �lter operations to operations on the prototype �lter oeÆients,and a multipliation by the modulation matrix. This ensured a minimum amountof multiply-aumulate operations. However, the fatorisation was exploited viaa state-spae representation to loate all memory-requiring operations next to themultiplexers and demultiplexers of the iruit. The bene�t is an implementationwith a only single TDL that an be onveniently updated.The presented implementation an be applied to a variety of modulated �lterbanks, suh as shown for DFT, GDFT, or SSB �lter banks, and with a largeexibility for the length of the prototype �lter. Although not expliitly derivedhere, the analysis and synthesis �lter bank implementations an be similarlyapplied to �lter banks where �lters Hk(z) and Gk(z) originate from more thanone prototype �lter [15℄.
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