Callyaerins A-F and H, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa
Ibrahim, Sabrin R M and Min, Cho Cho and Teuscher, Franka and Ebel, Rainer and Kakoschke, Christel and Lin, Wenhan and Wray, Victor and Edrada-Ebel, RuAngelie and Proksch, Peter (2010) Callyaerins A-F and H, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa. Bioorganic and Medicinal Chemistry, 18 (14). pp. 4947-56. (https://doi.org/10.1016/j.bmc.2010.06.012)
Full text not available in this repository.Request a copyAbstract
Bioassay guided fractionation of the EtOAc fraction of the sponge Callyspongia aerizusa yielded seven new cytotoxic cyclic peptides callyaerins A-F (1-6) and H (8). Their structures were determined using extensive 1D (1H, 13C and DEPT) and 2D (COSY, HMQC, HMBC, TOCSY, and ROESY) NMR and mass spectral (ESI and HRESI-TOF) data. All compounds were cyclic peptides containing ring systems of 5-9 amino acids and side chains of 2-5 amino acids in length. An unusual (Z)-2,3-diaminoacrylic acid unit provided the template for ring closure and afforded the linkage to the peptidic side chain which was always initiated with a proline moiety. All peptides contained three or more proline residues and the remaining residues were predominantly hydrophobic residues with all amino acids present in the l form. Callyaerins A-F (1-6) and H (8) showed biological activity in antibacterial assays and in various cytotoxicity assays employing different tumour cell-lines (L5178Y, HeLa, and PC12). Callyaerins E (5) and H (8) exhibited strong activity against the L5178Y cell line with ED50 values of 0.39 and 0.48 microM, respectively. On the other hand, callyaerin A (1) showed strong inhibitory properties towards C. albicans.
-
-
Item type: Article ID code: 32605 Dates: DateEvent2010PublishedNotes: Copyright (c) 2010 Elsevier Ltd. All rights reserved. Subjects: Medicine > Therapeutics. Pharmacology Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences Depositing user: Pure Administrator Date deposited: 17 Aug 2011 13:16 Last modified: 21 Aug 2024 12:45 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/32605