Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Callyaerins A-F and H, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa

Ibrahim, Sabrin R M and Min, Cho Cho and Teuscher, Franka and Ebel, Rainer and Kakoschke, Christel and Lin, Wenhan and Wray, Victor and Edrada-Ebel, RuAngelie and Proksch, Peter (2010) Callyaerins A-F and H, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa. Bioorganic and Medicinal Chemistry, 18 (14). pp. 4947-56.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Bioassay guided fractionation of the EtOAc fraction of the sponge Callyspongia aerizusa yielded seven new cytotoxic cyclic peptides callyaerins A-F (1-6) and H (8). Their structures were determined using extensive 1D (1H, 13C and DEPT) and 2D (COSY, HMQC, HMBC, TOCSY, and ROESY) NMR and mass spectral (ESI and HRESI-TOF) data. All compounds were cyclic peptides containing ring systems of 5-9 amino acids and side chains of 2-5 amino acids in length. An unusual (Z)-2,3-diaminoacrylic acid unit provided the template for ring closure and afforded the linkage to the peptidic side chain which was always initiated with a proline moiety. All peptides contained three or more proline residues and the remaining residues were predominantly hydrophobic residues with all amino acids present in the l form. Callyaerins A-F (1-6) and H (8) showed biological activity in antibacterial assays and in various cytotoxicity assays employing different tumour cell-lines (L5178Y, HeLa, and PC12). Callyaerins E (5) and H (8) exhibited strong activity against the L5178Y cell line with ED50 values of 0.39 and 0.48 microM, respectively. On the other hand, callyaerin A (1) showed strong inhibitory properties towards C. albicans.