Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Protein kinase inhibitors and other cytotoxic metabolites from the fungal endophyte Stemphylium botryosum isolated from Chenopodium album

Aly, A.H. and Debbab, A. and Edrada-Ebel, Ruangelie and Muller, W.E.G. and Kubbutat, M.H.G. and Wray, V. and Ebel, Rainer and Proksch, P. (2010) Protein kinase inhibitors and other cytotoxic metabolites from the fungal endophyte Stemphylium botryosum isolated from Chenopodium album. Mycosphere, journal of fungal biology, 1. pp. 153-162.

Full text not available in this repository.Request a copy from the Strathclyde author


The endophytic fungus Stemphylium botryosum was isolated from leaves of the medicinal plant Chenopodium album collected in Egypt. Extracts of the fungus grown on rice exhibited considerable cytotoxicity when tested in vitro against L5178Y mouse lymphoma cells. Upon chemical investigation they afforded the macrocyclic lactones curvularin (1) and dehydrocurvularin (2), as well as altersolanol A (3), tetrahydroaltersolanol B (4), stemphyperylenol (5) and macrosporin (6). The structures of all isolated compounds were determined by 1D and 2D NMR spectroscopy and mass spectrometry as well as by comparison with published data. Compounds 1-3 exhibited considerable cytotoxicity against L5178Y cells with EC50 values of 16, 1.4 and 0.6 μM, respectively, whereas the remaining compounds showed only modest activity. All compounds were further tested for protein kinase inhibitory activity in an assay involving 24 different kinases. Compound 3 was the most potent inhibitor displaying EC50 values ranging between 1.9 and 29.4 μM toward individual kinases, followed by 6 (EC50 = 2.3 - 27.1 μM). Compounds 4 and 5 showed moderate activity, while 1 and 2 were inactive.