Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Investigation into omacetaxine solution stability for in vitro study

Marenah, Lamin and Allen, Elaine and Mountford, Joanne and Holyoake, Tessa and Jorgensen, Heather and Elliott, Moira (2012) Investigation into omacetaxine solution stability for in vitro study. Biomedical Chromatography, 26 (5). pp. 545-547. ISSN 0269-3879

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Omacetaxine is a natural product extract originating from Chinese medicine and finding therapeutic use as a potent myelosuppressive agent in leukemia. When planning in vitro cell biology experiments to assess omacetaxine activity against primary leukemic stem cells, it became apparent that the literature rarely describes the in vitro stability of the molecule, although accessible chromatographic methods have been published. Clearly whole organisms vs their component cells will differ in the way in which they handle xenobiotics, with the latter more dependent on physiochemical parameters such as pH and temperature in the absence of active metabolism or excretion. This could impact on the cells’ experience of drug in culture. We therefore report here on examination of a modified, high-performance liquid chromatography (HPLC) method with assessment of degradant production from a 72 h solution stability study, clearly demonstrating that omacetaxine is highly stable in representative cell culture conditions (37 °C, neutral pH) and persists for many days in marked contrast to its short-half life in vivo.