Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Leishmania mexicana promastigotes inhibit macrophage IL-12 production via TLR-4 dependent COX-2, iNOS and arginase-1 expression

Shweash, Muhannad and Adrienne McGachy, H and Schroeder, Juliane and Neamatallah, Thikryat and Bryant, Clare E and Millington, Owain and Mottram, Jeremy C and Alexander, James and Plevin, Robin (2011) Leishmania mexicana promastigotes inhibit macrophage IL-12 production via TLR-4 dependent COX-2, iNOS and arginase-1 expression. Molecular Immunology, 48 (15-16). pp. 1800-1808.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The effects of Leishmania mexicana metacyclic promastigotes upon MAP kinase signalling in mouse bone marrow macrophages and subsequent expression of the disease regulatory proteins iNOS and COX-2 were studied. At a ratio of 5:1, promastigotes caused a marked increase in phosphorylation of the three major MAP kinases, ERK, p38 and JNK. MAP kinase signalling was substantially reduced in TLR-4(-/-) but not TLR-2(-/-) deficient macrophages and completely abolished in double TLR-2/4(-/-) macrophages. A similar outcome was observed using cysteine peptidase B deficient amastigotes. Furthermore, whilst promastigotes had no independent effect on iNOS or COX-2 expression, they prolonged the induction of these proteins stimulated by LPS and enhanced PGE(2) and NO production. Induction of COX-2 and iNOS was also TLR-4 dependent. Blockade of either PGE(2) or NO production with indomethacin or l-NAME reversed promastigote inhibition of LPS induced IL-12 production. Promastigotes also increased macrophage arginase-1 expression and enhanced arginase activity, both of which were substantially reduced in TLR-4 but not TLR-2 deficient macrophages. Surprisingly, arginase inhibition by Nor-NOHA also caused a reversal of promastigote mediated inhibition of macrophage IL-12 production. These data demonstrate for the first time the role of TLR-4 in mediating the effects of L. mexicana promastigotes on MAP kinase activation, up-regulation of COX-2, iNOS as well as arginase-1 expression in macrophages and further shows that PGE(2), NO and arginase activity all contribute substantially to the inhibition of host cell IL-12 production.