
This version is available at https://strathprints.strath.ac.uk/32332/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Wilkinson et al. Supplementary Figure 1

<table>
<thead>
<tr>
<th>DMSO</th>
<th>3h</th>
<th>8h</th>
<th>24h</th>
</tr>
</thead>
</table>

Bafilomycin
Wilkinson et al. Supplementary Figure 2

The figure shows the relative mRNA levels of SQSTM1/p62 under different conditions. The x-axis represents treatments with and without E64d/PepA, and the y-axis represents relative mRNA levels. The treatments are labeled as NTC1 and CDK11si1. The data points are indicated with bars, showing the mRNA levels at 72h and 96h, with error bars indicating the standard deviation.
Wilkinson et al. Supplementary Figure 3

The figure shows the cell cycle phase distribution for NTC1 and CDK11si1 cells treated with E64d/PepA at 48h and 72h. The x-axis represents different treatments: NTC1, CDK11si1, and their combinations with E64d/PepA. The y-axis represents the cell cycle phases: Sub G1, G1, S, G2/M. The bars indicate the percentage of cells in each phase, with error bars showing the variability. The timeline is marked at 48h and 72h, highlighting the changes in cell cycle phases over time.
Wilkinson et al. Supplementary Figure 4

A

B

Puncta +ve cells (%)

SubG1 (%)

zVAD-fmk - + - +

NTC1 CDK11si1

Vehicle +TNFα/CHX
Figure S1. *Drosophila S2R+* cells expressing GFP-LC3 were exposed to DMSO vehicle for 24 h or bafilomycin for indicated times and then analysed by confocal microscopy.

Figure S2. Analysis of p62/SQSTM1 mRNA levels following CDK11 knockdown. MDA-MB-231 cells were transfected with non-targeting control (NTC1) or CDK11si1 siRNA for 72 or 96 h and then treated with either vehicle control or 10 µg/ml E64d/Pepstatin A for 16 h. mRNA levels were analysed by qPCR. Data are presented as mean relative mRNA level ± SD (n = 3) relative to vehicle control in NTC1 transfected cells.

Figure S3. Cell cycle analysis following CDK11 knockdown. MDA-MB-231 cells were transfected with non-targeting control (NTC1) or CDK11si1 siRNA for 48 or 72 h and then treated with vehicle control or 10 µg/ml E64d/Pepstatin A for 16 h. Cells were harvested and stained with propidium iodide, and their cell cycle distribution assessed by flow cytometry. Data are presented as the mean percentage of cells in each cell cycle phase ± SD (n = 5).

Figure S4. (A) MDA-MB-231 GFP-LC3 cells were transfected with non-targeting control (NTC1) or CDK11si1 siRNA for 72 h and then treated with vehicle control or 50 µM zVAD-fmk for 16 h. The number of cells with overt GFP-LC3 puncta was determined from 10 independent fields. Data are shown as mean percentage of puncta positive cells ± SD (n = 10). (B) zVAD-fmk can inhibit cell death induced by TNFα in MDA-MB-231 cells. Cells were treated with 10 ng/ml TNFα plus 10 µg/ml cycloheximide (CHX) for 30h, in the absence or presence of 50 µM zVAD-fmk.
Adherent and non-adherent cells were collected and processed for PI staining. Cell death is shown as the mean percentage of subG₁ positive cells ± SEM (n = 3).