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Many dissipative optical systems support patterns. Dissipative solitons
are generally found where a pattern coexists with a stable unpatterned
state. We consider such phenomena in driven optical cavities containing
a nonlinear medium (cavity solitons) and rather similar phenomena
(feedback solitons) where a driven nonlinear optical medium is in front
of a single feedback mirror. The history, theory, experimental status,
and potential application of such solitons is reviewed.

1 Introduction

Spatial optical solitons are beams of light in which nonlinearity counter-
balances diffraction, leading to a robust structure which propagates without
change of form (Fig. 1a). These intriguing objects are solutions of nonlin-
ear wave equations. In the conservative case, the range of materials is rather
limited – they need to be self-focusing – and in many cases the existence
of stable spatial solitons is also limited to one-dimensional systems. Such is
the case for the simplest soliton medium, one with a Kerr nonlinearity, i.e.
a refractive index which changes in proportion to the intensity of the light.
However, as this book demonstrates, in the last years it became increasingly
clear that more general schemes can support stable soliton-like solutions with
lots of intriguing and new properties, if dissipation and feedback are explicitly
introduced. Among these dissipative solitons, localized bright spots in driven
optical cavities (Fig. 1b, c) received particular attention. They share some
properties with spatial solitons, and we will refer to them as cavity solitons
(CS). Actually, a ‘half-cavity’ turns out to be enough, i.e. very similar objects
are found in arrangements in which feedback is provided by a single-mirror
only (Fig. 1d, ‘single-mirror feedback scheme’). We will refer to them as feed-
back solitons (FS). Structures such as CS and FS could be natural ‘bits’ for
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parallel processing of optical information, especially since they can be found
in semiconductor micro-resonators.

In this chapter we briefly review the history and underlying nonlinear op-
tics of cavity and feedback solitons. We then describe in more detail some
models which show these soliton-like structures. It is somewhat paradoxical
that stable cavity solitons can exist in media with properties different from,
even opposite to, those required for Kerr-medium solitons. We therefore dis-
cuss candidate physical interpretations of these structures. We examine the
perturbation eigenmodes of CS in sample systems, which give information
on the soliton’s stability and response to external influences such as noise,
neighboring solitons or gradients of the holding field. Cavity solitons can be
created by localized pulses of light, and could thus be used to capture and
process images or information. The ability to control and manipulate these
solitons offers potential advantages over competing systems, and we mention
some device ideas which might capitalize on these advantages. These theoret-
ical considerations are supplemented by experimental results, mainly on FS.
Finally, we comment on similarities and differences of FS and CS.

Fig. 1. Nonlinear optical systems supporting pattern formation and solitons (plane
mirrors are drawn in grey): a) nonlinear beam propagation, b) cavity filled with non-
linear medium, c) cavity with a short medium, d) single-mirror feedback arrange-
ment.

This article concentrates mainly on the work of ourselves and collabora-
tors. This is primarily for convenience, and serves to illustrate points of general
relevance, but we have tried to present a fair and reasonably comprehensive
list of relevant references. Further information can be found in earlier reviews
and monographies [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. We mention also a recent feature
section on CS in IEEE Journal of Quantum Electronics [11]. Additional ma-
terial on experiments on CS in semiconductor microresonators can be found
in the chapter by Taranenko and Weiss [12] in this book. CS in lasers are
covered by Rosanov’s chapter [13]. There is a rich phenomenology and liter-
ature on CS which rely on the coupling of several optical fields through, for
example, a χ(2) nonlinearity. This has been shown in mean-field models to
support cavity solitons in both second-harmonic-generation (SHG) [14,15,16]
and optical parametric oscillator (OPO) [17, 18, 19, 20, 21, 22, 23, 24, 25, 26]
configurations. Another example is a two-photon laser [27]. A vector Kerr
medium also involves coupled fields, and exhibits polarised CS for appropriate
parameters [28, 29, 26]. Polarized CS exist also in χ(2)-materials [15, 23] and
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suitable conditions can be envisaged in certain single-mirror systems [30]. We
remark that in these systems CS are often due to a coexistence of two homo-
geneous states which arise from a symmetry-breaking pitchfork bifurcation.
Thus, they are somehow different from the CS on which this review focuses,
and to do them justice would have required a substantial lengthening of this
article, and so we have chosen not to deal further with these structures, di-
recting the interested reader to the cited literature. Experimental evidence
for such structures was given in intra-cavity four-wave mixing [31, 32, 4] and
recently in a single-mirror system [33]. Experimental investigations on CS in
self-imaging laser schemes and other oscillators are reported in [34,35,36,4].

2 History

The story of cavity solitons probably began with the seminal paper of Moloney
and co-workers [37, 38], who used split-step FFT methods to simulate trans-
verse effects in optical bistability (OB) [39,40]. The model system was a ring
cavity, driven by a gaussian beam, and containing a self-focusing Kerr-like
medium. The field was propagated (in z) around the cavity, and added co-
herently to the driving beam at the input beam-splitter. The transverse sim-
ulation was one-dimensional (1D), i.e. the intra-cavity field was described by
En(x, z) with n counting the cavity round-trips. When the input field was
ramped up to exceed the OB switch-up threshold, the beam center switched,
and a switching wave moved out, switching up most of the beam (Fig. 2). Then
something unexpected happened: a new instability. The interface between
the ‘on’ and ‘off’ domains spawned what would now be termed a modula-
tional instability (MI) of the ‘on’ region, which broke up into a set of distinct
peaks [37,38]. These were interpreted as a group of spatial solitons circulating
in the medium, perturbed by the output coupling losses and sustained by the
input field. Such a physical model has been termed ‘soliton-in-a-box’ [41]. Such
an interpretation is tenable only for a medium which could sustain solitons,
and thus cannot be a general model for CS and FS.

In this early cavity soliton work [37, 38] the beam either contains no soli-
tons, or is full of solitons: just two states, and therefore only a one-bit memory
in applications terms. McDonald and Firth [42] showed that it was possible
to make the individual solitons independently switchable by using a pump
beam with a spatially-varying amplitude. They modeled a 20-bit memory of
this kind, and also showed that it was possible to switch solitons ‘off’ as well
as ‘on’ (with an out-of-phase address pulse) [43].

The other key CS pioneer was Rosanov, who from study of OB switch-
ing waves developed the idea of ‘diffractive autosolitons’ [44, 45] in nonlinear
optics. Switching waves between co-existent stable states are known in many
fields, such as reaction-diffusion systems. Purely diffusive switching waves have
monotonic profiles, and the more stable state simply wipes out the less sta-
ble, as was shown in an OB model with pure diffusion [46]. When diffraction
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Fig. 2. Gaussian beam switching in an OB cavity. The central section of a smooth
broad beam (a) switches; a switching wave then forms and moves out (dotted curves
in (b); the high-intensity central region then breaks up into spikes (after Moloney
et al. [37, 38]).

is present, however, the switching wave typically has ripples. These can trap
other switching waves, and thus two can trap each other. Or, in 2D, one
switching wave might bend around and close on itself, forming a stable island
of one phase surrounded by the other – a diffractive autosoliton (DAS) [44,45].
Here, then, is a second physical interpretation of cavity solitons: self-trapped
switching waves. Note that here there is no requirement for bulk solitons: in-
deed Rosanov showed that DAS can occur even in a saturable absorber. Nor
is OB required: even in its absence one can still have switching waves, e.g.
between homogeneous and patterned states.

Rosanov has made many significant contributions to OB and related fields
on which excellent reviews are available [1, 9]. His work includes also DAS
in lasers. The interested reader is referred to these reviews and to Rosanov’s
chapter in this book [13].

In terms of early experiments, a 1990 special issue of JOSA B [47] gives a
useful snapshot and overview of the field. There were pioneering experiments
on driven plano-planar resonators containing a liquid-crystal cell [48,49] pub-
lished shortly afterwards. Regarding feedback-mirror experiments, as early as
1988 there was experimental evidence of spatio-temporal structure in sodium
vapor coupled to a feedback mirror [50], albeit with a long optical path and
low Fresnel number.

3 Mean-Field Models and Cavity Solitons

Analysis and modelling of patterns and solitonic phenomena is much simplified
in so-called mean-field cavity models, in which alternation of propagation
around the cavity with coherent addition of the input field is replaced by
a single partial differential equation with a driving term. In the context of
spatial pattern formation, this approach is ascribed to the seminal paper of
Lugiato and Lefever [51]. Here we give a heuristic derivation of the Lugiato-
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Lefever (LL) equation, starting from the well-known Nonlinear Schrödinger
Equation (NLS), which describes (conservative) solitons in Kerr media.

The NLS assumes an infinite nonlinear medium. Real nonlinear optical me-
dia have finite dimensions and (except in glass fibre) solitons can rarely prop-
agate more than a few centimetres before running out of material (Fig. 1a).
This perhaps makes it natural to put mirrors around the medium, confining
the soliton into a finite slab of material (Fig. 1b). With perfect reflection and
zero absorption, one could indeed confine a soliton in such a ‘box’. Real mir-
rors and materials are lossy, but we can make good the loss by ‘feeding’ the
caged soliton with an input field. We are thus led to consider a perturbed
NLS:

i
∂E

∂t
+

1
2

∂2E

∂x2
+ |E|2 E = iε(−E − iθE + Ein) (1)

The terms on the left are standard NLS terms, describing respectively evolu-
tion, diffraction and (Kerr) nonlinearity. The three terms on the right side are
perturbations of the NLS, all small if ε is. The first is just a linear loss (ε > 0),
and the last is the driving field Ein needed to sustain E against that loss. Less
obvious is the middle term, in θ, but we must remember that coherent light
confined between mirrors lies within an optical cavity, and so the response
to the driving field will strongly depend on whether or not it is in resonance
with the cavity. Hence, therefore, the presence of θ, the cavity mistuning. If
we ignore the left side of (1), then E = Ein/(1 + iθ), showing that the cavity
has a resonance Lorentzian in θ. This is appropriate for high finesse, where
just a single longitudinal mode may be considered.

There is one further change from the usual spatial-soliton NLS: propaga-
tion (in z) is replaced by evolution (in t). This is natural: the soliton is now
in a box, and not going anywhere.

In the limit ε → 0 equation (1) recovers the NLS, with a soliton solution
of sech-profile in x, time independent except for a phase rotation. We might
expect, therefore, that for finite ε it has sech-like cavity soliton solutions for
suitable Ein, and indeed it has. It is usual to consider Ein to be a plane
wave, independent of x (and y in 2D), in which case the soliton sits on a
homogeneous non-zero background field being a solution of (1). A finite but
relatively broad driving beam supports cavity solitons qualitatively similar
to those predicted for the simpler plane-wave input case. We remark that
(1) is not the only possible dissipative version of the NLS which might be
envisaged. For example, in [52] a damped and parametrically driven version
of the NLS is considered which serves as a model for ‘oscillons’, 2D localized
states in shaken granular materials [53]. They can be regarded as another
manifestation of dissipative solitons.

We now set ε = 1, which is equivalent to a re-scaling. This yields the
Lugiato-Lefever (LL) equation, which was originally introduced [51] as a model
for pattern formation. Note that in the LL equation time t is scaled to the
cavity loss time. The NLS limit is recovered as θ → ∞. The LL equation
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is also appropriate as a mean-field model for OB with transverse effects. The
term ‘mean-field’ arises because such models are usually derived by assuming a
high finesse, so that the cavity field is approximately constant along the cavity
axis. The high finesse allows the Airy function response of the cavity to be
approximated by a single longitudinal mode, giving the Lorentzian resonance
mentioned above. For a plane-wave pump, the plane-wave cavity field obeys
E0 = Ein/[1+i(θ−|E0|2)], which is three-valued for θ ≥ √

3, showing that the
model exhibits OB [51]. In fact, Lugiato and Lefever showed that E0 is stable
if |E0| < 1, but unstable, usually because of spontaneous pattern formation,
above that threshold [51]. In truth Fig. 2 was generated by simulating the
LL equation (for θ = 2.1, Ein = 1.5 for (a) and 2.5 for (b) and (c)), rather
than the original model of Moloney et al. [37,38]. The strong similarity of the
respective results shows how such mean-field models can capture the essential
features of a full cavity model while being both cheaper to simulate and easier
to analyze.

Such analysis is still by no means simple. Unlike for the NLS, no exact
analytical solutions for patterns or solitons are known for the LL equation.
The usual approach has been to perturbatively derive amplitude equations
or to resort to numerical integration of the model, neither of which is ideal.
Perturbative approaches, by their very nature, cannot provide quantitative
results and integration gives a very restricted view of the model’s bifurcation
behavior, by only finding solutions which are dynamically stable. Another
technique, which we have used extensively [41,54,55,56,57] is to use numerical
methods to find the system’s stationary solutions, their stability and their
response to perturbations. We will first apply the method to the LL equation
and later to other CS and FS models.

We look for stationary solutions (∂/∂t = 0) of equation (1), after setting
ε = 1 as discussed:

0 = −(1 + iθ)E + i|E|2E + i∆⊥E + Ein (2)

where the exact form for the transverse Laplacian ∆⊥ depends on whether we
consider 1D, cylindrically symmetric, or fully 2D geometries. We discretize the
space variable(s) on N grid points, apply periodic boundary conditions and use
a Fast Fourier Transform (FFT) algorithm to evaluate the spatial derivatives.
This gives a highly accurate, O(N), set of coupled algebraic equations which
can be solved using an iterative Newton method. Given a suitably close initial
guess, this method rapidly converges to a stationary solution (not necessarily
a stable one) of the original LL equation. These solutions can then be tracked
in parameter space, tracing out branches.

The use of a Newton method is advantageous because, as a by-product of
this process, it also finds the linearization, in the form of a Jacobian matrix,
around the solution found. The resultant eigenvalues, β, give the solutions’
stability and the eigenvectors {u} the associated modes.

Fig. 3 shows three solution branches tracked in this way. The lower line
shows the plane-wave solution discussed already to be stable below |E0|2 = 1
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and unstable above. At this point, a branch of localized, cylindrically symmet-
ric (∇2 = ∂2/∂r2 +1/r∂/∂r) solutions bifurcates subcritically before bending
around to form a positive-slope branch of finite amplitude. This upper branch
is the cavity equivalent of the unstable soliton-like solution to the 2D NLS.
This bifurcation structure is typical of cavity solitons in many systems. For
values of |Ein| > E

(sn)
in the two branches co-exist with the homogeneous back-

ground, to which the solitons asymptote at large radius. Note that only for
θ >

√
3 the homogeneous solution is multi-valued and so, over a broad range,

any interpretation of CS as self-trapped switching waves must relate to the
interface between the homogenous solution and a pattern, rather than sim-
ply between homogeneous solutions. We will discuss the relationship between
patterns and CS in some detail below.

We now turn to the stability of these cavity soliton solutions. As might
be expected, the lower branch of the loop is always unstable but, unlike the
2D NLS case, the upper branch may be stable [58]. The solid portion of the
upper branch in Fig. 3 shows where they are stable. We find that the onset
of instability is due to the presence of a Hopf bifurcation [58, 59], not, as in
bulk Kerr media, collapse. Direct simulation confirms the stability analysis.
A perturbed cavity soliton exhibits damped oscillations in the stable domain,
which become undamped as the stability boundary is crossed. Inside the in-
stability region, the CS shows periodic oscillations, but still does not collapse,
even well beyond threshold. Instead its minimum-amplitude shape becomes
very similar to that of the unstable CS solution belonging to the lower branch
in Fig. 3. Because that solution has only one unstable eigenmode, it acts as a
quasi-attractor for the oscillating CS, which dwells close to it before eventually
moving away along its unstable manifold [59].

Fig. 3. Branches showing the homogeneous solution and the cylindrically symmetric
cavity soliton solution for the 2D Kerr cavity, as a function of the background intra-
cavity intensity Is = |E0|2. Solid curves indicate stable solutions, dashed unstable
(θ = 1.3).
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The stability of 2D cavity solitons in the Lugiato-Lefever mean-field model
is a behavior qualitatively different from its bulk-medium equivalent. This en-
courages exploration of other models which might support CS. Comparing
the LL equation with the NLS, we note that the diffraction term and the
nonlinearity are not specifically associated with the cavity. We already mod-
ified the diffraction term when we considered the 2D Kerr cavity. We can
go further and add dispersion to make ‘3D’ cavity solitons [60, 61]. Or we
can replace diffraction with dispersion, and consider e.g. fibre cavities, where
Mitschke and co-workers [62] have found evidence of soliton-like structures
in synchronously-pumped fibre loops, and Wabnitz [63] has examined data
storage issues. This case is equivalent to diffraction in the 1D geometry of the
LL equation, and the existence and stability of CS in 1D is perhaps to be
expected.

The nonlinearity also offers considerable scope for variation. Perhaps the
obvious generalization from the Kerr nonlinearity is to a two-level atom-like
response, which becomes Kerr-like far from the atomic resonance. For exact
atomic resonance the medium is just a saturable absorber, with no nonlinear
refractive index contribution. It nonetheless supports stable, robust cavity
solitons [45,64,65].

The simplicity of the saturable absorber makes it a very useful model for
CS investigations, and we will use it as illustration of some interesting and
general CS phenomena. The spatio-temporal dynamics of the slowly varying
amplitude of the electromagnetic field E is modeled by

∂tE = −E

(
1 + iθ +

2C

1 + |E|2
)

+ i∆⊥E + Ein, (3)

which differs from the Kerr cavity equation (1) only in the nonlinear term,
in which C is a scaled atomic density. Since C is real and positive, this a
purely dissipative term, which in fact describes the linear as well as nonlinear
absorption due to the medium. The field scaling is such that the saturation
intensity of the transition corresponds to |E| = 1.

The homogeneous solution E0 of this equation (with plane-wave Ein) can
be multi-valued if C > 4 (absorptive OB). With or without OB, it can become
unstable to pattern formation [66], where the wave-vector K of the pattern at
threshold is simply given by K2 = −θ. This obviously requires that the cavity
mistuning θ be negative or, in physical terms, that the frequency (and the
corresponding wave vector, of course) of the intra-cavity field is higher than
the frequency (and wave vector) of the longitudinal (i.e. the on-axis) resonance
of the cavity. This has a simple physical interpretation - the unstable mode is
off-axis by just enough to compensate for the cavity mistuning, so that this
is a so-called ‘tilted-wave’ instability.

Figure 4 gives a demonstration of this scaling behavior. The panels a) and
b) display the near field intensity distributions observed in a vertical-cavity
regenerative amplifier driven electrically above transparency but below the
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self-oscillation threshold (Fig. 1c, [67]). Though the injected external optical
field is a smooth on-axis wave, the output shows spontaneous patterning and
the scale of the pattern depends on the frequency of the injected field which
defines also the oscillation frequency of the intra-cavity field. The patterns be-
come coarser as the injection wave length approaches the longitudinal cavity
resonance, as expected from the above consideration. The data depicted in
panel c) demonstrate also very nicely that indeed the square of the transverse
wave vector depends linearly on detuning. We note that the simple scaling
between the empty cavity detuning and the transverse wave vector holds only
for purely absorptive media. In dispersive media (in particular in semiconduc-
tor media), the shift in resonance due to the nonlinear refractive index shift
induced by the background field needs to be taken into account.
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Fig. 4. a,b) Near field intensity distribution observed in a vertical cavity regen-
erative amplifier for an injection detuned by about (a) 1.1 nm and (b) 0.4 nm. c)
Square of transverse wavevector in dependence on the injection wavelength (adapted
from [67]).

We dwelt on this issue in some detail because it will become clear when we
discuss the connection between CS and patterns, and in particular the ‘pat-
tern element’ interpretation of CS, that the scaling properties of the pattern
wavelength carry over to the half width of CS and to the minimum allowed
distance between them, at least to a great extent. Of course a soliton param-
eter such as the half width is also affected by diffusion, nonlinearity etc. We
remark that such a scaling is a general feature of optical pattern forming sys-
tems, since it is a direct consequence of the scaling properties of the paraxial
wave equation.

CS in the absorptive model (3) have recently been examined in detail
in [56]. We show in Fig. 5 a range of such solutions, including not only simple
single-peaked CS, but multi-peaked localized solutions in which up to four
similar-sized peaks sit on a flat background. The latter four-peak structure
invites interpretation as an ‘island’ of pattern set in the homogeneous solution
(which is single-valued for these parameters), an interpretation which we will
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now examine. We should first note that these CS solutions are presented
in terms of A(x), where by definition E = E0(1 + A), so that in terms of
A localized solutions sit on a zero background. Second, note that for any
given input field, all the peaks in these solutions seem to have one of two
heights. In particular, there are two single-peak CS of different amplitudes.
This is general - the low-amplitude-peak belongs to a branch of unstable CS
which bifurcates subcritically from the homogeneous solution at the pattern-
formation threshold [65,56], before bending back in a saddle-node bifurcation
to become the high-amplitude-peak branch (which is stable). The Kerr CS
discussed show a similar bifurcation structure (see Fig. 3).

Fig. 5. Sequences of profiles of one-dimensional CS solutions to equation (3) with
respectively odd (above) and even (below) numbers of main peaks. Dash-dotted,
solid and dashed lines correspond to solutions at |E0|2 = 1.22, |E0|2 = 1.33 and
|E0|2 = 1.44. Other parameters are θ = − 1.2 and C = 5.4.

Coullet et al [68,69] have recently offered a general mathematical analysis
of this scenario. They consider a situation in which a stable infinite pattern
co-exists with a stable homogenous solution. Then one can envisage a configu-
ration in which there is a domain with a pattern and a homogeneous domain,
with a front at their interface. In general one would expect one or other so-
lution to dominate, such that the front would move, annihilating the weaker
solution, until the entire space is filled with the dominant state. One might
expect there to be a kind of ‘Maxwell point’ in parameter space, at which
the dominant role switches from the pattern to the homogeneous state or vice
versa. In fact Pomeau showed that, because motion of the front requires cre-
ation or annihilation of pattern cells, the Maxwell point spreads out into a
locking range of finite width, within which the front is stationary, i.e. the two
states can stably coexist in real space as well as in parameter space [70]. Coul-
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let et al. showed, using generic properties of ordinary differential equations,
that in parameter space such a locking range is always accompanied by an
infinite sequence of localized states. As one enters the locking range from the
homogeneous-dominant side, pairs of N -peaked states appear in decreasing
order of N , while as one exits the range on the pattern-dominant side, these
states disappear in order, with the N = 1 states surviving longest.

(a)

(b)

(c) (d)

Fig. 6. Existence limits of N-peaked CS structures (shaded regions) in two-
dimensional parameter space (|E0|2, θ). Structures with N = 1, 2, 3, 4 respectively
exist between solid, dotted, dashed and dash-dotted lines. Panels (a) and (b) show
space-time plots of unlocking behavior, with the transverse coordinate (x) on the
horizontal axis and time (t) on the vertical axis. Panel (c) shows the fine struc-
ture of the locking domain, indicated by the square on the main figure. Parameters:
C = 5.4.

The saturable-absorber CS model (3) in one transverse dimension falls
within the class of models to which the Coullet et al. theory is relevant,
and Fig. 5 is fully consistent with that scenario. McSloy et al. [56] used the
stationary-solution approach described above to map out the existence do-
mains of the N = 1 to N = 4 peaked CS solutions in both one and two



12 Ackemann and Firth

dimensions, as a function of the two parameters θ and |E0|2. The results
are shown in Fig. 6, and are fully consistent with the analysis of Coullet et
al. [68,69]. In the broad central region of this figure, there is a stable N -peaked
localized state (or multi-CS) for any N . (In practice, N will be limited by the
size of the holding beam Ein relative to the size of the single-peaked CS.) The
analysis used by Coullet et al. is not extensible to two transverse dimensions,
but in Fig. 7 we show that basically the same phenomena occur [56]. In 2D,
multiple peaks transform into clusters, bound states of simple, cylindrically-
symmetric, CS [71]. Large clusters, especially symmetric ones, are also referred
to as ‘localized patterns’ [64]. In Fig. 7 we plot the existence domains of sin-
gle CS, and of dipole, triangular, and rhomboidal clusters [56]. In terms both
of parameter ranges, and of succession, these 2D CS structures are qualita-
tively similar to the better-understood 1D scenario. Also shown are plots of
the dynamics of the interesting centered-hexagon (N = 7) cluster outside the
locking range. It ‘dies’ in the left-hand (homogeneous-dominant) region, but
grows to form a full hexagonal pattern in the right-hand (pattern-dominant)
region.

(a)

(b)

Fig. 7. Locking regimes of 2D CS (solid/light gray), and of clusters of
two(dotted/gray), three (dashed/dark gray) and four (dot-dashed/black) close-
packed clusters of CS with respective existence indicated by (line style / fill shade)
(C = 5.4). Panels (a) and (b) show the dynamics of a centered hexagon struc-
ture (N = 7) outside the locking range. Respective intra-cavity field intensities are
|E0|2 = 1.08 and 1.45 with θ = − 1.2 and C = 5.4.

From this analysis we can conclude that with an appropriate choice of
system and parameters we can impress any number of CS up to some aperture-
delimited maximum Nmax on to the output beam of a driven optical cavity
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containing a suitable nonlinear medium. Such a medium acts as an Nmax-state
memory, assuming that we can create N -clusters of CS with N appropriately-
aimed address pulses. We can do better, however (and need to, if such a CS
memory is to be economic). Suppose that each of the component CS making
up the Nmax cluster can be independently switched, by selective addressing
at the site of each. Then each site acts as a pixel, which is ‘on’ when it
supports a CS, and ‘off’ when no CS is present at that site. In such a case, we
have 2Nmax co-existent states. Some years ago Firth [72] showed that there
is a certain equivalence between the condition for the existence of a full set
of 2N coexistent states in a 1D array and the ‘Smale horseshoe’ condition
for dynamical chaos. Though he used a simpler model than Coullet et al.
[68, 69, 73] (an imposed, not spontaneous, pattern), it seems likely that an
analogous development of their approach to consider quasi-random pixel-type
patterns will lead to a similar conclusion.

Fig. 8. Regular vs irregular patterns. On the left, a 7 × 7 square pattern. On the
right, the same template, but with five of the peaks (i.e. five individual CS) missing.
Both arrays are stable. Assuming that, similarly, any or all of the 49 peaks may
be present or absent, there are 249 different co-existent stable states of this array.
(Optical cavity with saturable absorber: θ = − 1.2 and C = 5.4.)

Figure 8 illustrates that this idea can work in practice. Using periodic
boundary conditions, a stable square ‘pattern’ exists, as illustrated in the left
panel. That this ‘pattern’ can be regarded as an array of independent CS is
illustrated in the right panel, where five of the ‘CS’ are missing. This structure
is also stable, and indeed this array operates in all respects as a 49-bit pixel
array memory, in which the pixel is ‘on’ or ‘off’ according to whether or not
there is a CS at the pixel site.

Given that CS are found in both Kerr and saturable absorber media, it
may be no surprise that the intermediate case of a two-level atomic response,
with mixed absorptive-dispersive nonlinearity, also supports cavity solitons,
though more readily on the self-focusing side of resonance [44,64,74,75,76,77].
It was also shown that these models reduce in some limit to Swift-Hohenberg-
like models [78, 64, 74, 66], a generic class of models in spontaneous pattern
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formation [79]. An experimental observation of dissipative Kerr-solitons was
recently reported for a nonlinear cavity filled with a liquid crystal [80].

A further CS generalization is to consider a nonlinearity mediated by a
material excitation. This opens up the further possibility that the medium
can have its own dynamics and spatial (usually diffusive) coupling. Semi-
conductors are particularly interesting among such media, and it has been
shown [76,77,81,54,82,83] that cavity solitons extend to semiconductor mod-
els, even in the presence of such ‘soliton-antagonistic’ effects as diffusion and
a measure of self-defocusing. Perhaps even more surprisingly, Michaelis et
al. [84] found bright solitons in a cavity model with a purely-defocusing, dif-
fusive saturable Kerr medium, such as is found in semiconductors just below
the band edge. Experimental observations of CS in semiconductor microcavi-
ties were reported in [85,86,87,88,89].

4 Self-Propelled Cavity Solitons in Semiconductor
Microresonators

Since basic properties of CS in semiconductor microresonators are covered in
another chapter of this book [12] and in [86, 90], we will concentrate here on
an interesting phenomenon which arises when thermal effects are coupled to
the light-carrier interaction equations.

Recent papers [92, 91] demonstrated and analyzed the existence of both
bright and dark spontaneously moving CS in a model of a semiconductor mi-
crocavity. The motion is caused by temperature–induced changes in the cavity
detuning and arises through an instability of the stationary soliton solution
when the temperature-tuning coupling is strong enough. The experimental
relevance of this coupling is demonstrated by the observation of opto-thermal
pulsations in semiconductor amplifiers [93]. Here, we briefly summarize the
main features of these phenomena, and detail just a few interesting examples.
More details of the phenomena and of models for CS in semiconductor cavities
can be found in [92,91,82] and references therein.

Before describing the particular model to be looked at, a brief digression
on the dynamics of CS is indicated. When the driving field is plane–wave and
the system invariant with respect to spatial translations, a given stable CS can
exist at any location. This symmetry property is manifest in the eigenvalue
spectrum of the soliton (or any stable stationary solution) by the fact that
there is a marginal mode with eigenvalue zero, which is connected to the
translational degree of freedom. All other eigenvalues than this neutral mode
u0 have negative real part, by virtue of the stability of the CS. This means
that, as t →∞, the amplitude a0 of the neutral mode dominates over all other
ai. Thus the dynamical effect of any perturbation P on a stationary stable
state is primarily determined by its projection onto the neutral mode, which
yields the equation [54]:
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da0

dt
=

1
< v0 | u0 >

< v0 | P > (4)

Here v0 is neutral mode of the corresponding adjoint problem. Because the
neutral mode is just the gradient of the CS, physically da0/dt is the transla-
tional velocity of the CS under the influence of the perturbation. Obviously
the motion of a such a CS under the influence of an external force is not
Newtonian, but overdamped (Aristotelian). Among the various types of per-
turbation, three of particular relevance are a phase or amplitude gradient of
the driving field [65, 1, 54], and perturbation of one soliton by another (see
Sec. 7.1). In the case of a weak phase gradient the input field around a CS at
x = 0 can be locally approximated by Ein = E0,in(1+ ikx). Inserting the per-
turbation part ikxE0,in into (4) we can calculate the drift velocity of a cavity
soliton due to the phase gradient (or, similarly, an amplitude gradient) [54].

By turning a parameter (here, the detuning) into a dynamical variable by
coupling it to the temperature, a spontaneous transition from stationary to
moving solitons becomes possible. We note that the stationary-to-moving CS
bifurcation has similarities with the Ising–Bloch transition for fronts studied
in [94] and more recently in [95, 96]. One particularly interesting feature to
emerge is that the spontaneously moving CS have inertia, so that their dy-
namics is quasi-Newtonian. In particular, they can rebound from obstacles (or
each other), and can oscillate in a potential well, impossible for Aristotelian
particles.

The system under consideration is a semiconductor microcavity (Figure
1c) consisting of a thin active region sandwiched between two high reflec-
tivity (∼ 99.9%) distributed Bragg reflectors (DBR). The device can be
driven by an external pump field Ein and, optionally, an external current
J (see [67, 86, 85, 12]). We will concentrate on the case J = 0, the so-called
passive system [82]. The intra-cavity electric field E, carrier density N and
temperature difference T between the lattice temperature and the ambient
temperature can be described by the following set of partial differential equa-
tions [77,82,92,91]:

∂E

∂t
= −(1 + iΘ)E + iΞχE + Ein + i∆⊥E (5)

∂N

∂t
= −γN

(
N + βN2 − J + (N − 1)|E|2 −DN∆⊥N

)
(6)

∂T

∂t
= −γT

(
T − ZN − PJ2 −DT ∆⊥T

)
(7)

where ∆⊥ is the transverse Laplacian in 2D. The strength of the material
nonlinearity is parameterized by Ξ. The cavity detuning is denoted by Θ
where

Θ = θ − αT (8)
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Here θ is the cavity detuning at ambient temperature and α a coupling pa-
rameter [97]. Note that if α = 0 there is no feedback from heating to the
carrier-field dynamics. Thus Equation (8) is the driver of the motional in-
stability, because it embodies the most important consequence of heating in
semiconductor microcavity devices: namely, a change in the linear refractive
index of the semiconductor material and hence a shift in the cavity reso-
nances [97, 89]. It is thus to be expected that α is the key parameter in the
analysis of this instability [91].

Elsewhere in these equations, the term βN2 describes radiative carrier re-
combination, carrier and thermal diffusion coefficients [98] are denoted by DN

and DT , the term ZN describes heating due to nonradiative recombination,
and PJ2 Joule heating by the current (if present).

For the passive MQW device model, the nonlinear susceptibility χ is as-
sumed to be simply a linear function of the carrier density [91]:

χ =
−(∆ + i)(N − 1)

1 + ∆2
(9)

The parameter ∆ represents the band-gap detuning.
Finally, the cavity field decays on a time scale of τ ≈ 10 ps. This value

is used to scale time in Eqs. (5)-(7). Then, the (normalized) time scale for N
and T are γ−1

N ≈ 100 and γ−1
T ∼ 105, respectively.

Equations (5)-(7) are known to exhibit plane-wave bistability and to pos-
sess stable, stationary CS solutions in the absence of thermal effects (α = 0)
[54]. We are going to describe structures whose existence is due entirely to the
effect of temperature changes on the cavity and thereby on the intra-cavity
field. In the passive system, the instability to moving solutions is observed for
dark solitons.

As intensity minima sitting on a high intensity background, dark soli-
tons are expected to exist on the upper branch of the plane–wave bistability
curve. Figure 9 shows an example of a dark soliton branch along with plane–
wave and roll (stripe) solutions. This particular roll solution has a wavevector
K ' 1.3Kc where Kc is the most unstable wavevector at the modulational
instability threshold. The homogeneous background field shows the under-
lying plane–wave bistability. For these parameters, dark solitons exist for
5.542 < Ein < 5.560 but are always unstable to spontaneous motion.

An example of a moving dark soliton is given in Figure 10. The physical
mechanism is reasonably simple. A stationary dark CS is a region of low
intensity, and thus of weak heating, and hence is relatively cold. If the coupling
α is positive, that means that the cavity tuning is locally (even) more negative.
Without thermal coupling, a CS will move to regions of smaller (absolute)
detuning, and so any small displacement of the CS field minimum (‘dark
spot’) from the temperature minimum (‘cool spot’) will induce it to move
further out of the temperature dip, at a speed related to the tuning gradient.
This movement is counteracted by the coupling of the temperature to the field
and carrier density, which will cause the ‘cool spot’ to follow the ‘dark spot’.
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(a)

(b) (c)

Ein

Fig. 9. (a) Solution branches for (i) rolls with K ' 1.3Kc and (ii) stationary dark
CS. Panels (b) and (c) correspond respectively to points on branches (i) and (ii).
Solid and dashed lines respectively denote |E| and T . The homogeneous solution
(iii) is stable on solid parts of the curve and modulationally unstable in the dashed
region. Parameters are α = 1, DN = 0.2, DT = 1, γN = 10−2, γT = 10−5, ∆ = 10,
θ = 0.3, Ξ = 80, β = 1.6, Z = 0.172. (b) Ein = 5.45 and (c) Ein = 5.55.

If α is small enough, the dark spot will move only slowly, and the temperature
will be able to follow any movement of the other fields, and so the CS will
be stable against fluctuations. For larger α, however, the dark spot will move
faster, and at some point the slow thermal dynamics will prevent the cool spot
from keeping up with the dark spot: then there is a transition to a dynamic
equilibrium, in which the CS moves at constant speed. The moving CS is
asymmetric, with the dark spot ‘ahead’ of the cool spot, and so always seeing
a tuning gradient. The E and T profiles of a typical moving dark soliton are
shown in Figure 10.

One can perform a weakly nonlinear analysis near the bifurcation point
between the stationary and moving solutions [91]. The calculation has simi-
larities to that reported in [96]. Omitting mathematical detail, the result is
an equation for the velocity of the moving CS which takes the form:
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(a) (b)

Fig. 10. (a) Magnitude of electric field (solid line) and temperature (dotted line) for
a dark, moving CS. (b) Space-time plot of |E| for a moving CS (periodic boundary
conditions). Parameters are Ein = 5.39 and α = 1. All other parameters as in Figure
9.

∂tv = av + bv3. (10)

The linear and cubic coefficients a and b in Equation (10) are constants which
can be determined from the CS solution to the field equations. If they are
of the same sign, then v = 0 is the only stationary solution, but if they are
of opposite sign there are also two constant-velocity solutions v = ±

√
−a/b.

This is typical of a pitchfork bifurcation, with the v = 0 solution becoming
unstable when a changes sign. Figure 11 shows a comparison [91] between the
speed predicted by this analysis and the results from numerical simulations of
Equations (5)– (7). The agreement is quite good, even more than three times
above threshold.

Note that Equation (10) involves the second derivative with respect to
time of the CS position, i.e. its acceleration. There is thus a superficial resem-
blance to a Newtonian force law obeyed by a massive particle. This inertial
dynamics is in complete contrast with that of a normally stationary CS. An
external perturbation drives the velocity of an otherwise stable stationary soli-
ton, while it drives the acceleration of a spontaneously moving soliton. The
latter acquires mass (or rather inertia) because, in essence, the mode which
becomes unstable at the bifurcation is identical to the neutral mode, giving
the CS an extra degree of dynamical freedom [96,91]. (Note that DAS in lasers
also obey a quasi-Newtonian equation of motion [1].)

Figure 12 illustrates the inertia effect in the collision of two self–moving
CS in two dimensions. They collide and merge, with the outgoing CS traveling
in a direction which, at first glance, looks like that of the mass-center of the
incoming CS. One must recall, however, that here there is no ‘conservation
of mass’, because the outgoing CS is identical to each of the incoming ones.
Nor is there conservation of momentum, in the Newtonian sense, because the
speed of the outgoing CS is the same of that of the incoming ones, regardless
of their directions of motion.

In summary, we have illustrated the existence, in both one and two spatial
dimensions, of spontaneously moving cavity solitons in a model of a semi-
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Fig. 11. The velocity of a moving soliton as a function of α: the diamonds indicate
results from numerical simulations, while the solid line comes from weakly nonlinear
analysis [91].

Fig. 12. ”Stroboscopic” images of collision and merging of two 2D spontaneously-
moving dark CS, showing inertial effects. Arrows indicate initial direction of motion.
Shown is the temperature field, obtained in a simplified semiconductor CS model,
in which the carrier dynamics is adiabatically eliminated (Eqs. (21,22) of [91]).
Courtesy A. J. Scroggie.

conductor microcavity. These solitons appear through an instability of the
stationary solitons arising from localized cavity tuning variations coupled to
temperature changes in the semiconductor induced by the light-carrier inter-
action. Regardless of the details of the present system, the essential ingredients
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appear to be the existence of stationary soliton solutions and the spontaneous
creation of self-sustained parameter gradients. Thus similar phenomena should
occur in a variety of optical and other systems. Indeed, spontaneously mov-
ing dissipative solitons are found in reaction-diffusion models [99] and were
recently identified experimentally in gas discharge systems [100].

5 Solitons in a single-mirror feedback arrangement

In the preceding sections, it became evident that dissipative solitons are a
robust feature of nonlinear cavities if they are operated close to a pattern-
forming instability. In addition, in many cases the existence of CS was ac-
companied by bistability between plane-wave states, though this was not ab-
solutely necessary. Hence it appears to be natural to look for solitons also in
other nonlinear optical systems allowing for pattern-formation and/or optical
bistability. In the context of pattern formation, the so-called ‘single-mirror
feedback scheme’ [101, 102, 103, 6] has emerged as an experimental and the-
oretical workhorse for studying complex self-organization behavior in space
and time and hence it is maybe not too surprising that dissipative solitons
can be also found in these systems [104, 105, 106, 107, 108, 109, 110, 111, 112,
113,114,115,116].

5.1 Single-mirror feedback arrangements: Mechanism of spatial
instability

The basic scheme discussed in the following is depicted in Fig. 1d. It is a thin
slice of a nonlinear medium irradiated by a spatially smooth beam (ideally a
plane wave with uniform amplitude and phase). A plane feedback mirror is
placed at a distance d after the medium to generate a counter-propagating
beam in the nonlinear medium [101, 102, 103]. The basic idea in the ideal-
ized scheme is the spatial separation of the region in which nonlinearities are
at work and the region in which diffraction takes place: If the slice is suffi-
ciently thin, propagation in the slice can be neglected and it will provide just
some phase modulation and amplitude modulation. In this way the theoretical
treatment is tremendously simplified.

Now consider a weak perturbation in the form of a sinusoidal modulation of
the index of refraction in a dispersive nonlinear medium, e.g. a Kerr medium.
This modulation will give rise to a weak phase modulation of the transmitted
wave. Diffraction during the propagation to the mirror and back will usu-
ally convert phase modulation, at least partially, into amplitude modulation.
However, in a Kerr medium an amplitude modulation generates a correspond-
ing index modulation, and so the original fluctuation can be enhanced and
sustained by positive feedback. The connection between the longitudinal and
transverse length scales at which conversion between phase and amplitude
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modulation takes place is given by the paraxial wave equation. The phase of
an off-axis wave with transverse wave vector K evolves like

φ =
iK2z

2k0
(11)

after propagation over a distance z (k0 wave vector of light). The periodicity
of the phase in (11) in dependency on z is also at the heart of the so-called
Talbot-effect [117, 118], i.e. the periodic recurrence of amplitude and phase
modulation along the propagation direction. Eq. (11) implies that for a given
phase shift the selected wave length scales with the square root of the mirror
distance d [101,102,103,6]. Note the similarity to the cavity case: both schemes
rely on the differences in phase shift acquired during propagation for different
tilt angles. However, in the cavity it is the interference condition provided by
the cavity boundary conditions which converts the accumulated phase into
amplitude, whereas here it is the interference of the off-axis wave with the
on-axis carrier.

For a ‘dynamic Kerr’ nonlinearity, as was assumed in the original proposal
[101,102,103], the equation of motion for the deviation of the refractive index
from its value in thermal equilibrium is

d

dt
n = −γn + D∆⊥n + P, (12)

where γ is a relaxation rate, ∆⊥ is the transverse part of the Laplacian model-
ing some nonlocal coupling within the medium, D is the corresponding ‘diffu-
sion’ constant, P denotes the pump rate being proportional to the sum of the
intensities of the forward (Ef ) and the backward (Eb) field, whose amplitudes
are suitably scaled. The transmitted field is given by

Et = Ein exp (−iχk0L/2), (13)

where L is the length of nonlinear medium and the dielectric susceptibility
for the model Kerr medium assumed here is χ = 2n. The backward field is
calculated from the transmitted one by taking into account its propagation in
free space and the reflection from the mirror with reflectivity R:

Eb =
√

Re−id∆⊥/k0Et, (14)

Note that Et and hence Eb and P depend on n. Thus (12) is a nonlinear,
nonlocal partial differential equation.

The refractive index change n could have many different physical origins.
It might be due to highly off-resonant excitation in an atomic medium, due
to a change of a carrier concentration in a semiconductor (at weak excitation)
or due to a field-induced reorientation of the director orientation in a liquid
crystal. Indeed, soon there were plenty of realizations of the proposed scheme
using a variety of different nonlinear media. We refer to review articles and the
references given therein for an overview [3, 6]. Typically, the first structures
bifurcating at threshold are hexagons [102, 103, 3, 6] and in at least two cases
it was shown explicitly shown that they may bifurcate subcritically from the
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homogeneous state [119,120]. Hence, already one of the prerequisites identified
above for the formation of solitons is fulfilled.

We will now concentrate on the case where the nonlinear medium is sodium
vapor driven in the vicinity of the D1-line. The use of an atomic vapor has
the advantage of combining a rather high all-optical nonlinearity with a good
optical quality and the possibility of a well established description of the light-
matter interaction in terms of the semiclassical density matrix formalism.
Very interesting experiments on localized states and solitons have also been
performed in the so-called liquid-crystal light-valves [121, 104, 105, 108, 112,
109,113,115,116].

5.2 Experimental setup

The experimental setup (Fig. 13) consists of a cell containing sodium vapor in
a nitrogen atmosphere and a plane feedback mirror at some distance d behind
the medium. The cell is heated over a length of 15 mm, while the ends are
cooled. The cell temperature is varied in the range around 320◦C, yielding a
particle density of 1019 m−3 to 1020 m−3. The buffer gas (pressure typically
200 - 300 hPa) reduces the diffusion, provides a homogeneous linewidth mask-
ing the Doppler effect and the hyperfine splitting of the ground state and it
quenches the excited state in order to prevent diffusion of radiation. The cell
is placed in a magnetic field B which has a non-vanishing longitudinal (z-axis)
and transverse component (x-axis) with respect to the direction of the laser
beam.

2Na+NQW

holding beam

HW

AOM

addressing
beam

B

d

CCD

mirror lens

Fig. 13. Scheme of the experimental setup. AOM: acousto-optic modulator, QW:
quarter-wave plate, Na+N2: sodium-cell, CCD: charge-coupled device camera.

The output beam of a cw dye laser, which is stabilized in frequency and
intensity, is carefully spatially filtered by transmitting it through a single
mode fiber. After the fiber, the beam is collimated (w0 = 1.5 mm, radius
at 1/e2–point of intensity) and injected into the sodium cell. We will refer to
this beam as the ‘holding’ or ‘background’ beam. It is circularly polarized and
the detuning ∆ of its frequency with respect to the resonance of the Na–D1

is chosen to be about 10 GHz to the blue side. Under these conditions the
nonlinearity has both a dispersive and an absorptive contribution.

A small amount of light is split off the main beam and serves as an ‘address-
ing beam’ which ‘ignites’ the solitons. It can be gated by an acousto-optical
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modulator (AOM). The radius (1/e2) of the addressing beam is 0.17 mm. Its
polarization state and frequency is discussed in more detail below. The power
in the background beam within the sodium vapor is in the order of 100 mW
and in the address beam about 1 mW.

The feedback mirror has a reflectivity of 90 . . . 99%. The transmitted part
of the light passes a lens which can focus more or less arbitrary planes of the
beam path onto the image plane of a CCD camera. If not stated otherwise
the imaged plane is at a distance 2d behind the sodium cell, i.e. the recorded
intensity distribution corresponds to the reflected and re-entrant field Eb.

5.3 Optical pumping nonlinearity in alkali metal vapors

For the conditions of the experiment, the optical nonlinearity on the D1–
line can be described in the framework of the homogeneously broadened
J=1/2→J’=1/2 transition depicted in Fig. 14a. Angular selection rules al-
low the creation of a population difference between the two Zeeman sublevels
of the ground state. If we assume e.g. excitation with σ+–light, then only
the mJ = −1/2–substate of the ground state absorbs, but both are repopu-
lated by the relaxation processes (spontaneous emission and quenching of the
excited state by collisions with nitrogen molecules). The relaxation is even
isotropic for the conditions of the experiment since the populations in the
sublevels of the excited state are rapidly equalized by the collisions with the
buffer gas. This process is referred to as optical pumping [122] and leads to a
rather efficient optical nonlinearity.

a) b)
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Fig. 14. a) Kastler diagram of a J=1/2→J=1/2 transition driven by σ+-light (solid
black arrows) and/or σ−-light (dashed grey arrows). b) Modified Kastler diagram
for blue detuned excitation with σ+–light in the presence of an oblique magnetic
field. For simplicity, the splitting of the excited state is not shown. The dashed line
indicates the position of the ground state of the bare atom.

The existence of a population difference between magnetic sublevels im-
plies the existence of a macroscopic magnetic moment of the sample. This will
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precess in an external magnetic field. If the direction of propagation of the laser
beam is used as the axis of quantization (z-axis), then the presence of a trans-
verse component Bx of the magnetic field causes changes in the z-component
of the magnetic moment, i.e. ‘spin-flips’ between the Zeeman sublevels occur
(Fig. 14b). The mechanism is most effective if the longitudinal component Bz

vanishes. In a quantum mechanical description the light-induced level-shift
has to be taken into account (Fig. 14b). It acts like an extra contribution
to the z-component of the magnetic field and is proportional to the intensity
times the detuning of the laser with respect to the atomic resonance.

In a formal description it is convenient to introduce the Bloch vector m =
(u,v,w) which is proportional to the ground–state orientation of the sodium
vapor [123]. Its equation of motion is given by [124]:

∂t m = −(γ −D∆⊥)m + êzP − Pm−m×Ω. (15)

The first three terms are identical to the ones we know already from the Kerr
case, Eq. (12). Here, they are interpreted as collision-induced relaxation, ther-
mal motion of the sodium atoms in the buffer gas atmosphere, and optical
pumping. The next term describes the saturation of the optical nonlinearity
and would be also present in models for two-level atoms and semiconductors.
The components of the vector Ω = (Ωx, 0, Ωz − ∆̄P ) are the Larmor frequen-
cies produced by Bx and Bz, respectively, with the latter being modified by
a light-shift term [123]. ∆̄ is the detuning between the incident field and the
atomic transition, normalized to the relaxation constant Γ2 of the polariza-
tion of the medium. The complex susceptibility of the vapor depends on the
longitudinal component w of the orientation through [123]

χ = − N |µ|2
2h̄ε0Γ2

∆̄ + i

∆̄2 + 1
(1− w) ≡ χlin(1− w), (16)

where N is the sodium particle density. The equations for the transmitted
and re-entrant field distributions were given in (13) and (14).

The homogeneous solution for the steady state of w is given by

w0 =
P0

γ + P0

(Ωz − ∆̄P0)2 + (γ + P0)2

(Ωz − ∆̄P0)2 + (γ + P0)2 + Ω2
x

, (17)

where P0 = Pin(1 + R| exp (−ik0lχlin(1− w0)/2)|2). Equation (17) has the
interesting property that it has a a resonance–like dependence on the term
Ωz − ∆̄P0, i.e. there can be a pronounced minimum of the orientation for a
well–defined finite light intensity (see Fig. 15). This is a manifestation of a
‘light-shift induced level-crossing’ produced by the combined action of Zeeman
splitting and light-shift (Fig. 14b, [124,6]). In the presence of optical feedback
the corresponding characteristic curve describing the homogeneous solution of
the orientation can become very steep (see Fig. 15) or even bistable [124,111].
There is some analogy between the z-component of the magnetic field in
the feedback system and the detuning parameter in a cavity, although we
warn that one should not take this analogy too seriously: Ωz as well as θ
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determine where (and whether) on the pump axis OB occurs. In addition,
a nonlinear resonance might occur in both cases, if Ωz or θ are ramped at
constant pumping. However, there is no continuous dependence of the selected
spatial scale on Ωz as it is on θ in the cavity case.
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Fig. 15. Solutions and their stability properties, both obtained from semi-analytical
calculations. The sigmoid curve extending over the whole range of pump parame-
ter depicts the homogeneous, steady–state solution (orientation versus input pump
rate). The dashed parts are unstable against periodic perturbations at a finite trans-
verse wave number. The additional curve in the central range of pump parameter
depicts the maximum orientation of a branch of feedback solitons (FS) bifurcat-
ing subcritically from the homogeneous solution at P0 = 100500 s−1. Again the
dashed part is unstable. Parameters: Ωx = 1.2 × 105 rad/s, Ωz = 9.0 × 105 rad/s,
∆ = 10.0 GHz, d = 70 mm, N = 3.0 · 1013 cm−3, D = 237 mm2/s, γ = 1.5 s−1,
Γ2/(2π) = 1.6 GHz, L = 15 mm, R = 0.915 (from [114]).

In the following, we will investigate the behavior of the system in the
vicinity of the minimum of the characteristic curve in a situation in which the
homogeneous characteristic is very steep, i.e. close to being bistable (‘nascent
optical bistability’, Fig. 15).

6 Basic results

6.1 Switch-on and -off procedure

Fig. 16 illustrates the process of igniting and erasing a FS. The system is pre-
pared in an ‘unstructured’ state by slowly increasing the power of the back-
ground beam from low values until the working point close to the minimum
of the transmission curve is reached (leftmost image in Fig. 16). Then the
polarization of the addressing beam is adjusted by means of a half–wave plate
such that it is the same as that of the background beam after recombination.
This means that the two beams are circularly polarized with the same helicity
after the quarter–wave plate. When the addressing beam is then switched on,
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a bright spot emerges at the position of the addressing beam (second image
from the left). This spot remains stable after the addressing beam is switched
off (central image of Fig. 16). The shape of the central lobe deviates from a
Gaussian and it is surrounded by weak dark and bright diffraction fringes (see
also Figs. 19, 18), i.e. it deviates from the Gaussian profile of the addressing
beam. This indicates that this bright peak is an attractor of the dynamics.

amplitude

time

Fig. 16. Ignition and erasure of a localized state with the addressing beam. The up-
per part of the figure shows schematically the amplitude of the addressing beam, the
lower row the near field intensity distribution of the beam reentering the medium.
Parameter: d = 70 mm, ∆ = 8.2 GHz, B⊥ = 2.59 µT, Bz = 19.2 µT, cell temper-
ature 312.3◦C, pN2 = 197 hPa, Pin = 100 mW. The images are plotted in a linear
grey–level scale with white denoting high intensity. The absolute scale was adjusted
such that the background beam is always clearly visible; therefore the center of the
FS is overexposed. The frame size is 2.6 mm×2.6 mm (from [111]).

Now the polarization of the addressing beam is rotated by 90◦ by turning
the half–wave plate; therefore the background beam and the addressing beam
are still circularly polarized in the medium but with opposite helicity. If the
addressing beam is switched on again at the position of the peak, a dark hole
appears (second image from the right in Fig. 16). The hole disappears after
the addressing beam is switched off again. Thus the bright peak is erased and
the homogeneous state is reached again.

This procedure can be repeated over and over again. This observation
proves that there is bistability between a state with one bright peak on an
unstructured background and the unstructured background alone. This is the
expected behavior for a FS or a CS.

The remaining question needed to be answered is why we can utilize ‘po-
larization’ of the opposite helicity to erase a FS, whereas we stated in the first
sections that an addressing beam of opposite phase should be used. The rea-
son becomes immediately clear by looking at Fig. 14a. Circular polarization
components of opposite helicity pump antagonistically. Hence, it is possible to
mimic destructive interference by using the opposite polarization component
(see, e.g., Eq. (7) of [111] for the complete equations). This has the addi-
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tional advantage that there is no need for interferometric stability between
the beam pathes of the holding and the addressing beam, since light of op-
posite polarization does not interfere. Indeed, the frequency of the addressing
beam was shifted from the frequency of the holding beam by 140 MHz due to
the presence of the AOM. Hence, even the switch-on is created by an incoher-
ent superposition of the holding and the addressing beam again eliminating
the need for interferometric path length stability. We remark that, of course,
switching of FS is also possible by using constructive and destructive interfer-
ence of coherent beams of the same circular polarization, however this scheme
is considerably less robust.

These observation obviously motivate considerations on whether polariza-
tion degrees of freedom might be utilized for phase–insensitive control of CS
in semiconductor microcavities. We remark that the phase–insensitive con-
trol of all-optical flip–flops based on small–area semiconductor amplifiers was
achieved by injecting beams of very different wavelength (several tens of nm)
which perturb incoherently the carrier concentration [125]. For the case of CS,
interesting studies exist using beams of orthogonal linear polarization [85].
However, the mechanisms of incoherent switching are unclear and a complete
control of ignition and erasure was not achieved, yet.

In general, the FS are not stable at the positions at which they are ignited,
but they start to drift after the addressing beam is switched off. This is due
to a drift motion of the FS in intensity and phase gradients of the light field
as discussed in the preceding sections for CS. In a rotationally symmetric
holding beam, the FS will be trapped either in beam center or on a ring
with a certain distance from the center, since these are the points equivalent
by symmetry. For the present situation, the amplitude gradients pull the FS
towards the center, whereas the phase gradients push them out. As a result,
there is a stable equilibrium at a finite distance from beam center. This is very
apparent where more than one FS exist on the beam (Fig. 17). This issue is
discussed in more detail in [114,110].

a) b) c) d) e)

Fig. 17. Stable clusters of localized structures. The images are overexposed in order
to emphasize the diffraction fringes surrounding each localized structure. Parame-
ters: B⊥ = 0.78 µT, B‖ = 14.40 µT, ∆ = 18.6 GHz, d = 70 mm, p = 310 mbar,
T = 315◦ C. Power: a) 131 mW, b) 133 mW, c) 133 mW, d) 135 mW and e) 138
mW. The transverse size of the images is 2.6 mm (from [107]).
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6.2 Existence of FS: theory

Fig. 15 shows the calculated homogeneous solution for the orientation versus
the input pump rate for a typical situation in which the experiments with FS
have been carried out. After the minimum, the homogeneous characteristic
has a sigmoid form, which corresponds to the situation of ‘nascent optical
bistability’ for which many semi-analytical studies of CS were done [64, 74].
The sections of the homogeneous solution that are drawn dashed are linearly
unstable against periodic perturbations at a finite wave number, i.e. there is a
pattern forming modulational instability (MI) [126]. We will investigate this
in more detail below (see Sect. 7.2).

For a calculation of the soliton branches a method similar to the one
discussed above for CS is utilized, i.e. we will analyze in the following the
system which is obtained from Eq. (15) by setting the time derivative to zero.
In order to simplify the calculations, radial symmetry is assumed. Then, the
stationary states are found by discretizing the differential equation in space
and searching for solutions of the resulting large set of coupled equations
with a Newton method. The fact that in the feedback problem, Eq. (14), the
Laplacian operator appears in an exponential whereas it is only first order
in the cavity case, Eq. (1), constitutes a technical difficulty which is solved
by evaluating the derivatives by a Hankel transform method in Fourier space
[127].

The calculations show that a branch of FS emerges from the homogeneous
state at the point where the homogeneous state becomes modulationally un-
stable near the minimum of the characteristic (Pin = 1.005 · 105s−1, Fig. 15).
The branch bifurcates backwards, turns around at Pin = 0.891 · 105s−1 and
terminates again at a point which coincides with the MI point with a relative
deviation of less than 10−3. Here, the FS becomes unstable against the forma-
tion of spatially extended patterns. With the present accuracy of the program
code, it is not sure, whether the two points coincide or not.

The upper part of the branch is stable, the lower unstable, i.e. the bi-
furcation to the FS is subcritical. Between Pin = 0.891 · 105s−1 and Pin =
1.005 · 105s−1 FS coexist with the homogeneous solution. At the limit point
Pin = 0.891 · 105s−1 they disappear via a saddle–node bifurcation. The simi-
larity to the bifurcation behavior of CS depicted in Fig. 3 is obvious.

Fig. 18a shows the calculated profile of a FS on a plane–wave background.
It consists of a high–amplitude central peak which is surrounded by oscillating
tails. This matches the experimental observation. For x → ±∞ it approaches
the homogeneous solution. Numerical simulations of the full two–dimensional
equations show that it can exist anywhere in the transverse plane, if a plane
wave input beam and periodic boundary conditions are used. Furthermore
several FS can exist at the same time at different positions of the transverse
plane. These properties are completely identical to those of CS (cf. Fig. 5b
for the profile of a corresponding CS). In the experimental realization there
is – as already discussed – no complete arbitrariness of positioning since the
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symmetry of the system is reduced due to the radial gradients induced by the
Gaussian input beam.
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Fig. 18. a) Transverse cut through the center of a calculated FS for a plane–
wave background beam for Pin = 0.96 · 105s−1 (other parameters as in Fig 15). The
graph shows the pump rate of the reflected field versus one transverse coordinate. b)
Bifurcation diagram for spatially extended periodic patterns. Shown is the maximum
orientation versus the pump rate. The lower curve corresponds to the homogeneous
solution. It is unstable in the dotted part. The wavenumbers of the patterns are:
Double crosses (lower right curve) 17.1 mm−1, crosses 10.2 mm−1, rhombs 7.9 mm−1

(from [114]).

Since the bifurcation to FS is subcritical one can create a FS by a large–
amplitude perturbation (sometimes called ‘hard’ perturbation) in the bistable
region before the bifurcation point. This is the region in which the experiment
described above was performed. The unstable branch will be very important
in the turn-on experiments discussed below since it defines the separatrix in
phase space.

6.3 Mechanism of stabilization

As mentioned in the description of the experimental setup, the plane imaged
onto the camera can be varied. Thus the change of the intensity distribution
in the light field during its propagation in the free space between the non-
linear medium and the feedback mirror and also behind the mirror can be
monitored. The latter corresponds to the intensity distribution in the back-
ward beam, of course. Corresponding results are shown in Fig. 19a. At the
position of a FS, there is an intensity peak at the exit window of the cell.
During the propagation of the beam, however, the central intensity increases
strongly and simultaneously the width of the peak decreases. This behavior
is possible if the main effect of the FS is a phase modulation that creates
locally a concave deformation of the wavefront which makes the beam locally
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converge to a focus. The central intensity reaches a peak and then declines,
but when the beam reenters the medium after being reflected it still has a
very pronounced intensity peak, surrounded by wiggles which obviously cor-
respond to diffraction fringes. The behavior is reproduced well in simulations
(Fig. 5a of [110]). These also confirm that there is a strong local curvature of
the phase surface introduced by the FS (Fig. 19b).
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Fig. 19. a) Observed profiles of the intensity distribution produced by a FS during
propagation from the sodium cell to the mirror and back. Parameters: Bx = 4.17 µT,
Bz = 8.23 µT, ∆ = 13.5 GHz, d = 80 mm, Plas = 107 mW, T = 340.0◦C,
pN2 = 216 hPa (from [107]). b) Numerically calculated phase distribution produced
by a FS during the propagation between the sodium cell and the mirror and back.
Parameters: Ωx = 1.2·105 rad/s, Ωz = 9.0·105 rad/s, ∆ = 10.0 GHz, γ = 1.5 s−1,
D = 237 mm2s−1, Γ2 = 1.0·1010 s−1, N = 0.3·1020 m−3, d = 70 mm, Pin =
96000 s−1 (from [110]).

It can be concluded that the mechanism of the formation of the FS is the
following: the address beam locally introduces a distribution of the orienta-
tion which acts like a focusing lens. This lens introduces a phase encoding
which makes the diameter of the local field distribution shrink until the fo-
cus is reached. The process works best if there is a strong dependence of
the orientation on the intensity, as in the case of nascent OB. Indeed in the
corresponding intensity range the medium is self-focussing, while it is self-
defocusing at the intensity level of the background beam which corresponds
to the descending slope of the plot (Fig. 15). It will be of importance in Sect. 7
that strong diffraction fringes occur in the process.

We mention that the stabilization of localized states by self-induced lensing
was suggested first, to our knowledge, in [128,49] for plano-planar cavities with
a liquid-crystal nonlinearity. It can be shown that even in a simple lensing
model the scaling of the size of a FS with wavelength and mirror distance is the
same as the scaling for the pitch of a pattern due to the Talbot effect, Eq. (11),
[129]. We commented on the generality of this scaling behavior already before
in the CS case (see also [49]).

This interpretation of a FS seems to correspond best to the ‘soliton-in-a-
box’-picture of CS, i.e. in the ‘half-cavity box’ formed by the medium and the
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mirror a self-consistent localized state forms due to the interplay of nonlinear
refraction (lensing) and diffraction. We mention that the analogy can be made
even closer by regarding the medium as an ‘active mirror’ [130,131], although
to our knowledge this idea was not worked out for localized states. However,
we will see that the ‘part-of-a-pattern’-interpretation can also be applied in
the FS case.

7 Interaction behavior

7.1 Interaction between two solitons

An analysis of images containing several FS (e.g., Fig. 17) suggests that cer-
tain distances between single FS are preferred by the system. For a detailed
analysis we recorded a large number of images for fixed experimental pa-
rameters at a constant time interval of 200 ms. Within this time, typically
spontaneous transitions between different configurations of FS occur. The ob-
served configurations varied in the number of constituents (from 1 to 3) and
in the position of the FS on the preferred ring around the beam center. These
different configurations are interpreted as manifestations of the high degener-
acy of the situation because of multistability due to symmetry and due to the
coexistence of several states. Random transitions between these states occur
due to noise. For the histogram of distances displayed in Fig. 20g the subset
of images containing only two FS has been considered.

a) b) c)

d) e) f)
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Fig. 20. Stable configurations of two localized structures. a) – c): Experiment
(overexposed in order to visualize the diffraction fringes), parameters: B⊥ = 2.36 µT,
B‖ = 10.98 µT, ∆ = 13.9 GHz, d = 63 mm, p = 200 mbar, T = 316◦C. d) – f):
Numerical simulation, parameters B⊥ = 3.94 µT, B‖ = 15.72 µT, ∆ = 9.5 GHz,
d = 63 mm, sodium particle density N = 0.3 · 1014 mm−3. The transverse size of
the images is 2020 µm. g) Histogram of distances between two localized structures;
669 images are evaluated (from [107]).

A preference for three discrete values of the distance is clearly visible from
Fig. 20. By weighted averaging over the three humps we find the values 445
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µm, 573 µm and 717 µm. Fig. 20 a) – c) shows typical examples of these con-
figurations. The peaks for larger distances between two FS are broader than
the first peak; the reason for this result is probably that the configurations
with a larger distance are more sensitive to noise or parameter fluctuations.
The images of the bound states depicted in Fig. 20a) and d) are the analogue
to the cavity case depicted in Fig. 5f).

For studying the interaction behavior calculations are carried out under
the assumption of a plane wave background beam. In this way the drift of the
FS in a gradient of the background is eliminated. It turns out that – depending
on the initial distance between two FS – they either attract or repel each other
until a stable distance is achieved. The resulting histograms are much sharper
than the experimental one proving that the stable configurations belonging to
bound states of FS are indeed discrete. Fig. 20 d) – f) show the configurations
for the three smallest stable distances between two FS. The corresponding
distances are 393 µm, 533 µm and 691 µm, i.e. they show a rather close
correspondence to the experiment. We find even larger distances than these
three, but they are rather unstable with respect to noise.

As explained in the sections on CS, stationary solitons have a neutral
mode related to the translational symmetry. Consider now the perturbation
of a soliton with respect to another soliton. The oscillations of the phase
and amplitude of the soliton field as it dies away into the background field
will provide a perturbation to the other soliton. This perturbation induces a
drift motion with some velocity. We can expect to find equilibrium positions
where the relative velocity is zero, and that these define stable or unstable
bound states of two solitons. Because the solitons are surrounded by several
diffraction fringes, a large number of equilibrium positions can be expected
between two solitons. Only the smallest distances, however, are observed in
the limited beam. Furthermore we observe numerically that the stability of a
bound state of FS against perturbations decreases with increasing distance,
which is consistent with the fact that the amplitude of the fringes decreases.
The pitch of the diffraction fringes and the corresponding distances between
the FS depend on the mirror distance d with roughly the same scaling as for
extended patterns (Eqs. (11)). They can be also changed to some extent by
introducing a Fourier filter in the feedback loop [127,112].

Obviously, it is worthwhile to strive for analytical insight into the FS in-
teraction, especially on the establishment of a concrete relationship between
the pitch of the diffraction fringes and the mutual distances. This is however
quite difficult to perform in the present system, since intensity fringes do not
interact directly, but the interaction is mediated rather by the spatial profiles
in the three different components of the Bloch vector induced by the intensity
profile. The spatial profile of these components can be quite different, e.g.
u has a hole at the positions of a FS. In addition, strength and position of
the ripples in the Bloch vector components depend on diffusion. Hence the
situation is more complicated than in a Kerr medium (with negligible or only
small diffusion), in which there is a 1:1 correspondence between intensity and
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the induced refractive index. Nevertheless, our observations are backed up,
complemented and extended by recent nice experiments on FS interaction in
liquid-crystal light-valves with a Kerr-like nonlinearity [112,115]. This estab-
lishes a rather universal behavior of FS. A corresponding interaction behavior
is also found for CS [75,84,81,21,54,71] for nonlinearities based on a intensity
dependence of the refractive index as well as on saturable absorption. For CS,
semi-analytical studies were performed revealing quantitatively the interac-
tion potential [21, 54, 71, 132]. Actually, the universality applies not only for
FS and CS but even for dissipative solitons in non-optical systems [99] (and
Refs. in [107]). However, in some sense this is not too surprising since the qual-
itative aspects of solitons with oscillatory tails should be fixed by symmetry
considerations.

An analysis of the clusters with more than two constituents in Fig. 17
reveals that most of the distances observed between the constituents appear
already in the bound states of two single FS for identical parameters; the
deviations are characteristic for the type of cluster. It should be kept in mind,
however, that in the experiment the shape of the clusters is not only a result
of the interaction of FS with each other, but also of the interaction of the FS
with the inhomogeneous holding beam – favoring positions on ring segments.

7.2 Connection between solitons and extended patterns

The results of a linear stability analysis of the homogeneous state reported in
Fig. 15 show that the FS branch arises from a point in which the homogeneous
solution becomes unstable versus spatially periodic perturbations, i.e. pattern
formation. Indeed, it was also established experimentally, that the existence
region of FS is at the boundary of the existence region of spatially extended
patterns (Fig. 4 of [111]).

Fig. 18b shows three branches of perfect periodic hexagonal pattern exist-
ing in the parameter regime discussed in Fig 15. These patterns differ by their
length scale. The branches of two of these (with a wavenumber of 10.2 mm−1

and 7.9 mm−1) are very similar to each other and to the FS branch depicted in
Fig 15 except for the fact that the pattern branches extend in the MI region.
The third branch has a wave number of 17.1 mm−1 and has a different ampli-
tude and existence range. Interestingly, the next-neighbor distance between
two spots of the hexagonal patterns corresponds nearly exactly to the distance
between the FS in bound states of two FS for these parameters. This holds
for all three patterns (distances in bound states: 434 µm, 720 µm, 937 µm;
next neighbor distances in patterns: 424 µm, 711 µm, 918 µm [127]) This sug-
gests a ‘FS = part of a pattern’ interpretation like in the case of CS discussed
above. Using suitable initial conditions also a great variety of clusters and of
patches of hexagonal patterns surrounded by voids (‘localized patterns’) can
be found (Fig. 21a-c). It is also possible to create patterns in which single or
multiple constituents are missing (Fig. 21d, e), [133]). Corresponding states
were discussed above for CS (see also [64,71,56,87,73]).
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We warn that the perfect patterns mentioned above as well as the closely
packed localized patterns form only, if they are seeded. Otherwise spatially
irregular states with clusters of FS and voids in between them emerge, if sim-
ulations are started from noisy initial conditions above or below the MI point
(Fig. 19 of [114]). These show a great similarity to the ‘cracking hexagons’
obtained for CS [55].

The results on bound states of FS or CS indicate the intriguing possibility
to build up nearly arbitrary states from (weakly) interacting FS or CS which
serve as ‘quasi-particles’. The perfect patterns might be also interpreted as
being due to weakly interacting FS (see the discussion above for CS, see also
[84,87]). The interpretation of the pattern with a wavenumber of 17.1 mm−1 is
not quite clear, since there the constituents differ significantly from the shape
of a single FS.

a) b) c) d) e)

Fig. 21. Localized patterns with the same pitch as the extended pattern with
10.2 mm−1 in Fig. 18b). P0 = 90000 s−1 (from [114]).

Finally, we note that obviously bistability between plane wave states is
not a prerequisite for FS (see Fig. 15). We obtained this result for CS before
(see also [57, 132]). What is needed is bistability between a plane wave state
and a spatially extended pattern. Nevertheless, we find numerically that FS
only exist, if the slope of the homogeneous characteristic is ‘sufficiently high’,
i.e. if one is ‘sufficiently close’ to nascent OB (see Fig. 6 of [114]). We are not
aware of a rigorous analysis of the situation, but it seems to be reasonable
that large-amplitude structures like FS or CS are somehow favored by the
existence of the second high-amplitude branch. For patterns, modifications
of the standard bifurcation in the vicinity of bistability between plane wave
states is known [134,133,132].

8 Applications

Arrays of cavity solitons may have applications in parallel information pro-
cessing [135]. They can be created at any location by a suitable address pulse,
and are non-diffracting and dynamically stable, all of which makes them suit-
able ‘bits’ for image or data capture, storage and processing. This has been
demonstrated numerically in [65] and confirmed in the prototype experiments
discussed above and in [104,105,85,88,86]. Cavity and feedback solitons also
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offer functionalities which are beyond any micro-structured material array,
whether optical or electronic. In particular, we have seen that they can be
optically manipulated, e.g. by imposing a spatial phase profile on the driv-
ing field [65,77,54]. Processing schemes which take advantage of their unique
properties may avert the unequal competition with silicon which has plagued
other all-optical processing schemes.

Any perturbation to the pump field which has a finite gradient at the
soliton location will couple to the ‘neutral mode’ identified above, and cause
the soliton to move. This has implications for the response of CS and FS to
noise and to any stray gradients, and also for interaction between them, as is
illustrated by the experimental results on FS discussed above. This coupling
can also be used positively, to control the motion and location of the solitons
through the spatial phase profile of the pump field. One can think of the
solitons in a ‘landscape’ determined by the phase of the holding (control)
field, a landscape in which they move in response to phase gradients. Thus a
simple memory array [65] consists of a regular landscape of ‘hills’ and ‘valleys’,
with the solitons attracted to the peaks. Unlike one formed from machined
pixels, however, this landscape is reconfigurable by changing the phase profile
of the control field. This allows these ‘soliton bits’ to be manipulated, by
either global or local reconfigurations of the control field. This plasticity opens
up possibilities for novel processing functions and applications [135]. In the
following, we will discuss two prototype experiments which give proofs of
principle of these ideas for FS in sodium vapor.

65 mW 68 mW 70 mW 70 mW 72 mW
a) b) c) d) e)

Fig. 22. Pinning of FS on positions that are prescribed by modulations in the
background light field. Parameters: B⊥ = 2.38 µT, Bz = 7.55 µT, ∆ = 12.0 GHz,
d = 70 mm, T = 303.0◦C (from [110]).

First, we show how ‘FS bits’ can be pinned to a fixed position in the trans-
verse plane by spatial modulations of the holding beam. For the experiment
shown in Fig. 22 this proposal has been realized in a very simple manner by
introducing a quadratic aperture into the input beam and thus inducing a
quadratic diffraction pattern. The small amplitude modulations appearing in
the background beam can be seen in Fig. 22 (a). In addition, there will be
phase modulation. We are able to create a 2×2–Array of FS: When the input
power is increased, the FS pop up spontaneously on the four positions pre-
scribed by the diffraction pattern. Probably because of small misalignments
in the experimental setup we did not succeed in producing bistability between
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the states with and without FS on all four positions simultaneously. In ad-
dition to the pinning of FS, this feature would be necessary for an optical
memory.

Another possible application that uses FS as optical bits is demonstrated
in Fig. 23. Here the feedback mirror has been slightly tilted in order to initiate
a drift motion of the FS. In the experiment shown in Fig. 23 the direction of
the drift motion is upwards. For t = 0 µs there is one FS in the upper part of
the background beam and a second FS is being created with the addressing
beam in the lower part. Therefore in the following the system is in a state
where two storage positions are occupied with a FS. After 64 µs the upper FS
has disappeared, at t = 80 µs a new FS has been created in the lower part.
An empty storage location can be created simply by omitting the addressing
beam in one cycle.

t=0 µs t=16 µs t=32 µs t=48 µs t=64 µs t=80 µs
a) b) c) d) e) f)

Fig. 23. Optical buffer register. The FS are drifting upwards since the feedback
mirror is tilted. New FS are created in the lower part of the image by the addressing
beam with a frequency of 14 kHz. Parameters: B⊥ = 0 µT, Bz = 14.41 µT, P0 = 115
mW,∆ = 11.9 GHz, d = 70 mm, T = 329.5◦C (from [110]).

Such an all–optical buffer register could be used in optical telecommuni-
cations for the translation of serial data into parallel data, or could serve as
a buffer for the temporary storage of data [136], which is considered to be
a key-element of future all-optical communication and processing networks.
Since the drift velocity of the FS depends on the tilt angle of the feedback
mirror, the delay of the buffer register can be adjusted easily. In the situation
considered here, the total number of FS is rather limited due to the small
beam radius. However, in principle much larger systems are accessible, if the
material questions are solved. Fig. 24 shows a simulation of an optical buffer
memory using drifting CS (saturable absorber model) for a homogeneous,
but phase-tilted, input beam. Note that such schemes depend on the non-
diffracting property of a CS or FS: an ordinary beam created by a bit-pulse
would diffract as it drifted, and the information would be lost.

For applications, it is very important to determine the response and switch-
ing times of FS and CS. Hence, we next discuss the transient evolution of the
ignition process of a FS. The power of the background beam is adjusted such
that the system is in the unstructured branch within the bistable region. The
switching process is observed with a fast photodetector placed in the near
field image plane at the location of the addressing beam.



Cavity Solitons 37

Fig. 24. Two frames from a soliton buffer memory simulation in the saturable-
absorber cavity 3. CS are written at the left by ”1” pulses of an optical bit-stream,
and drift rightwards on a uniform phase gradient (from [135]).

The ignition pulse used in the experiment has a width of 1.7 µs (dashed
curve in Fig. 25a). Obviously the detector monitoring the transmitted light has
to show a corresponding signal during the time interval in which the addressing
pulse is present (solid curve in Fig. 25a). Afterwards the transmission drops
again to nearly the initial value, but the switching process has been started.
In the example shown it takes 25.4 µs (using a 50%–criterion) until the FS
is finally switched up. The success of the ignition process depends on the
amplitude Ia as well as on the duration of τa of the addressing pulse. For zero–
dimensional bistable systems it was found that for switching pulses that are
short compared to the relaxation of the medium, only the pulse area, i.e. the
product F = Ia ·τa in the case of a rectangular pulse, is the decisive factor [137,
138, 139, 140]. Although we did not perform the systematic studies necessary
to establish a pulse area law strictly, it will be seen in the following that our
experimental results for various amplitudes and widths are in accordance with
such a law.

Fig. 25b shows the distribution of switching times versus a control pa-
rameter ε, which is related by ε = (Fa − Fc)/Fc to the pulse area Fa and
the critical pulse area Fc. The switching time increases logarithmically, if ε is
decreased. The increase of the switching time observed in the experiment is
called noncritical slowing down and has been established for zero–dimensional
bistable systems [138, 139, 140]. It may be useful to call the interpretation of
the phenomenon to mind: the action of the short addressing pulse is integrated
over its duration and puts the system in phase space beyond the separatrix.
ε parametrizes the distance to the separatrix. After the addressing pulse re-
laxational dynamics towards the stable fixed point takes place. If one starts
close to the separatrix (unstable fixed point) the dynamics is governed by
the exponential growth of deviations from this fixed point, which explains the
observed logarithmic dependence of the switching time on the (excess) pulse
area of the addressing beam.

Non-critical slowing down was discussed before numerically as well as an-
alytically for CS [43, 54, 56] and was experimentally observed for LS in a
liquid crystal light valve [104,105] with switching times in the regions of some
hundreds of milliseconds. Obviously, these switching times as well as the ones
obtained here, are not very attractive for applications. However, the switching
times scale somehow with the relevant relaxation rates, though, of course the
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Fig. 25. a) Temporal evolution of transmitted power during ignition of a FS (solid
line) after an addressing pulse is applied (dashed line). b) Distribution of switching
times in dependence on the control parameter ε (see text). The spread in switching
times which is apparent around ε ≈ 0.1 is probably related to perturbations of
parameters. Parameter: d = 70 mm, ∆ = 8.9 GHz, B⊥ = 2.35 µT, Bz = 15.1 µT,
cell temperature 313.2◦C, pN2 = 200 hPa, Pin = 76 mW (from [111]).

problem of the divergence at the separatrix always exists. For semiconductor
systems, switching times in the nanosecond-range are found [88, 12, 90] after
first experiments were limited by thermal time scales [85]. These investiga-
tions demonstrate clearly that the knowledge of unstable states can be very
significant in understanding and control of spatial structures in nonlinear op-
tical systems. This makes the analysis of stationary solutions an even more
valuable technique in the study of model systems.

9 Conclusion

We have discussed a class of stable soliton-like structures predicted to exist
in pattern-forming nonlinear optical systems containing any of a wide variety
of nonlinear materials. This class includes semiconductor micro-resonators,
which is promising for possible applications of these cavity and feedback soli-
tons. They can be formed into two-dimensional arrays of information bits
which can be written, stored, read, erased, and spatially manipulated in var-
ious ways. They can thus act as the basis of a new kind of all-optical parallel
processor, with functionalities not available to other processing and storage
devices in information technology.

Apart from this applicative aspect, their formation, stabilization and in-
teraction involves a lot of interesting physics. Particularly intriguing is their
‘quasi-particle’ nature and their interaction properties. Although obviously
numerous details remain to be worked out, these might open the intriguing
possibility to construct a parallel to the chain of complexity known from equi-
librium physics (atom – molecule/cluster - crystal/solid state lattice) in non-
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equilibrium physics: single CS/FS – clusters/molecules – localized patterns –
spatially extended periodic patterns.

Another intriguing aspect is the astonishing parallels between CS and FS
in shape, bifurcation characteristics and interaction behavior. This illustrates
that the existence of dissipation and feedback creates a universality transcend-
ing the differences in geometry between the two systems and that both should
be regarded as representatives of the very general class of dissipative optical
solitons. Nevertheless, it is of course instructive and important to understand
and interpret the mechanism of localization in each specific system and we
commented on several aspects of that.
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97. C. Degen, I. Fischer, W. Elsäßer, L. Fratta, P. Debernardi, G. Bava, M. Brun-
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