Dynamic control of localized structures in a nonlinear feedback experiment

Ayoub, Moussa and Gutlich, B. and Denz, Cornelia and Papoff, Francesco and Oppo, Gian-Luca and Firth, William; Descalzi, Oreste and Clerc, Marc and Residori, Stefania and Assanto, Gaetano, eds. (2010) Dynamic control of localized structures in a nonlinear feedback experiment. In: Localized States in Physics: Solitons and Patterns. Springer, pp. 213-236. ISBN ISBN-10: 9783642165481 (https://doi.org/10.1007/978-3-642-16549-8_11)

Full text not available in this repository.Request a copy


Spatial dissipative solitons exhibit a robust form as well as complex dynamic behaviour that make them attractive for applications in the context of all– optical information processing. In this chapter we give an overview of recent experimental and theoretical results on the features of spatial dissipative solitons in a single feedback experiment using a liquid crystal light valve (LCLV) as a model nonlinear medium. In particular, we present techniques for the control of the symmetry and spatial position of localized states in LCLV based experiments. We first discuss the interaction of dissipative solitons with spatially imposed boundary constraints in the feedback loop. This interaction leads to symmetry-breaking phenomena of feedback dissipative solitons. We also present static and dynamic techniques to experimentally control and guide dissipative solitons on modified background by using externally adapted intensity distributions.


Ayoub, Moussa, Gutlich, B., Denz, Cornelia, Papoff, Francesco ORCID logoORCID: https://orcid.org/0000-0002-3456-343X, Oppo, Gian-Luca ORCID logoORCID: https://orcid.org/0000-0002-5376-4309 and Firth, William; Descalzi, Oreste, Clerc, Marc, Residori, Stefania and Assanto, Gaetano