Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Palaeovolcanic forcing of short-term dendroisotopic depletion: The effect of decreased solar intensity on Irish oak

Ogle, N. and Turney, C.S.M. and Kalin, R.M. and O'Donnell, L. and Butler, C.J. (2005) Palaeovolcanic forcing of short-term dendroisotopic depletion: The effect of decreased solar intensity on Irish oak. Geophysical Research Letters, 32 (4). L04708.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

[1] The climatic effects of historical volcanic eruptions are well documented in the literature. What are less certain however, are the effects of eruptions on more distant environments, particularly vegetation. Here we present subannual delta(13)C records from two high-resolution Irish oak ( Quercus spp.) chronologies that span the Laki (Grimsvotn) 1783-84 and Tambora 1815 eruptions. In both instances, a significant depletion in delta(13)C is recorded within the trees following the eruption (similar to 1.8%o). Historical meteorological datasets from observatories near to the trees sampled demonstrate that the shifts in carbon isotopic content cannot be accounted for by changes in local climate. We postulate atmospheric loading of ejecta from the eruptions resulted in significantly reduced irradiance, increasing discrimination within the trees.