Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Bioremediation of tributyltin contaminated sediment : degradation enhancement and improvement of bioavailability to promote treatment processes

Sakultantimetha, A. and Keenan, H. E. and Beattie, T. K. and Bangkedphol, S. and Cavoura, O. (2011) Bioremediation of tributyltin contaminated sediment : degradation enhancement and improvement of bioavailability to promote treatment processes. Chemosphere, 83 (5). pp. 680-686. ISSN 0045-6535

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Bioremediation of tributyltin (TBT) contaminated sediment was studied and degradation enhancement and improvement of bioavailability were also investigated. In TBT spiked sediment, the half-life of TBT in the control sample, representing natural attenuation, was 578 d indicating its persistence. In the stimulated sample (pH 7.5, aeration and incubated at 28 C), the half-life was significantly reduced to 11 d. Further stimulation by nutrient addition (succinate, glycerol and L-arginine) or inoculation with Enterobacter cloacae (107 viable cells g1 of sediment) resulted in half-life reduction to 9 and 10 d, respectively. In non-spiked sediment, the indigenous microorganisms were able to degrade aged TBT, but the extended period of contamination decreased the degradation efficiency. To improve bioavailability, addition of surfactant, adjustment of salinity and sonication were studied. The highest percentage solubilisation of TBT in water was obtained by adjusting salinity to 20 psu, which increased the solubility of TBT from 13% to 33%. Half-lives after bioavailability was improved were 5, 4 and 4 d for stimulation, stimulation w/nutrient addition and stimulation w/inoculation, respectively. However, natural attenuation in the control sample was not enhanced. The results show that providing suitable conditions is important in enhancing TBT biodegradation, and bioavailability improvement additionally increased the rate and degraded amount of TBT. Unfortunately, nutrient addition and inoculation of the degrader did not enhance the degradation appreciably.