Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Laser accelerated ions in ICF research prospects and experiments

Roth, M. and Brambrink, E. and Audebert, P. and Basko, M. and Blazevic, A. and Clarke, R. and Cobble, J. and Cowan, T.E. and Fernandez, J. and Fuchs, J. and Hegelich, M. and Ledingham, Kenneth and Logan, L.G. and Neely, D. and Ruhl, H. and Schollmeier, M. (2005) Laser accelerated ions in ICF research prospects and experiments. Plasma Physics and Controlled Fusion, 47 (12B). B841-B850. ISSN 0741-3335

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The acceleration of ions by ultra-intense lasers has attracted great attention due to the unique properties and the unmatched intensities of the ion beams. In the early days the prospects for applications were already studied, and first experiments have identified some of the areas where laser accelerated ions can contribute to the ongoing inertial confinement fusion (ICF) research. In addition to the idea of laser driven proton fast ignition (PFI) and its use as a novel diagnostic tool for radiography the strong dependence on the electron transport in the target was found to be helpful in investigating the energy transport by electrons in fast ignitor scenarios. More recently an additional idea has been presented to use laser accelerated ion beams as the next generation ion sources, and taking advantage of the luminosity of the beams, to develop a test bed for heavy ion beam driven inertial confinement fusion physics. We review our recent experiments and simulations relevant to ICF research presenting a possible scenario for PFI as well as the prospects for next generation ion sources.