Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Laser accelerated ions in ICF research prospects and experiments

Roth, M. and Brambrink, E. and Audebert, P. and Basko, M. and Blazevic, A. and Clarke, R. and Cobble, J. and Cowan, T.E. and Fernandez, J. and Fuchs, J. and Hegelich, M. and Ledingham, Kenneth and Logan, L.G. and Neely, D. and Ruhl, H. and Schollmeier, M. (2005) Laser accelerated ions in ICF research prospects and experiments. Plasma Physics and Controlled Fusion, 47 (12B). B841-B850. ISSN 0741-3335

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The acceleration of ions by ultra-intense lasers has attracted great attention due to the unique properties and the unmatched intensities of the ion beams. In the early days the prospects for applications were already studied, and first experiments have identified some of the areas where laser accelerated ions can contribute to the ongoing inertial confinement fusion (ICF) research. In addition to the idea of laser driven proton fast ignition (PFI) and its use as a novel diagnostic tool for radiography the strong dependence on the electron transport in the target was found to be helpful in investigating the energy transport by electrons in fast ignitor scenarios. More recently an additional idea has been presented to use laser accelerated ion beams as the next generation ion sources, and taking advantage of the luminosity of the beams, to develop a test bed for heavy ion beam driven inertial confinement fusion physics. We review our recent experiments and simulations relevant to ICF research presenting a possible scenario for PFI as well as the prospects for next generation ion sources.