Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

The agreement of Breit-Pauli and Dirac R-matrix collision strengths for iron peak elements: an Fe14+ case study

Berrington, K.A. and Ballance, C.P. and Griffin, D.C. and Badnell, N.R. (2005) The agreement of Breit-Pauli and Dirac R-matrix collision strengths for iron peak elements: an Fe14+ case study. Journal of Physics B: Atomic, Molecular and Optical Physics, 38 (11). pp. 1667-1678. ISSN 0953-4075

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In calculating collision strengths and excitation rates for electron impact on moderately ionized iron peak elements, one might question whether the Breit-Pauli R-matrix method is sufficiently accurate as compared with the Dirac R-matrix method. We test this for Fe14+ by removing as far as possible any variation in algorithmic features, such as the energy mesh and target state expansion, as opposed to genuine differences between the two approaches. We find the average difference between the Breit-Pauli and Dirac R-matrix effective collision strengths is only 6%, which confirms the hypothesis that if one gets the Dirac and Breit-Pauli target states close, and resolves the resonances adequately (we use up to 384101 points), then the Dirac and Breit-Pauli collision strengths are in good agreement. We finally tabulate the best converged effective collision strengths for T = 10(5)-10(7) K for all transitions involving the lowest 10 levels of Fe14+.