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In this work, we present results from self-consistent charge density functional based tight-binding �DFTB�
calculational scheme, including local-density approximation +U �LDA+U� and simplified self-interaction-
corrected-like potentials for the simulation of systems with localized strongly correlated electrons. This ap-
proach attempts to combine the efficiency of tight binding with the accuracy of more sophisticated ab initio
methods and allows treatment of highly correlated electrons for very large systems. This is particularly inter-
esting for the case of rare earths in GaN, where dilute amount of rare earth ions is used. In this work, we show
the results of test calculations on bulk ErN and on the substitutional ErGa in wurtzite GaN, which we choose
as representatives of bulk and point defects in solids with strongly correlated electrons. We find that ErN is a
half metal in the ferromagnetic phase and that the substitutional ErGa in wurtzite GaN has C3v symmetry. These
examples show that the DFTB approach reproduces well the results of more demanding calculation schemes
with a very low computational cost, making it suitable for the study of extended systems beyond the capabili-
ties of density functional theory.
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I. INTRODUCTION

Rare earth compounds have been a long time puzzle.
They show extremely interesting properties but are quite dif-
ficult to investigate both experimentally and from the theo-
retical point of view. Researchers realized that even a small
amount of impurities or crystal disorder could dramatically
affect the properties of relatively simple systems such as rare
earth �RE� monopnictides,1 which were then combined with
the well known problems of chemically separating different
rare earths. Theorists instead had to face the problem that
usual approaches for the simulation of large electronic sys-
tems, local-density approximation �LDA� or generalized gra-
dient approximation �GGA�, could not satisfactorily describe
compounds with strong electron-electron interactions. A
proper treatment of the strongly correlated 4f electrons of the
lanthanides, in fact, goes beyond a classical mean-field
approach, and computational methods which are able to
address this correlation problem, such as the GW
approximation2 or LDA extensions including orbital-
dependent potential such as self-interaction correction
�SIC�,3,4 are computationally demanding. In an attempt to
improve the description of strongly correlated systems while
extending the size of the studied system, different orbital-
dependent corrections have been implemented in the spin-
polarized charge-self-consistent density functional based
tight binding �DFTB�,5,6 namely, the LDA+U �in both fully
localized limit �FLL� and around mean field �AMF�� and a
pseudo-SIC approach.7,8 This gives us the possibility to treat
large systems containing RE in an accurate manner within a
fast tight-binding �TB� framework. At the same time, we can
make a comparison of pros and cons of the different orbital-
dependent approaches as well as investigating how far
simple LDA-like approaches can be used to simulate f sys-

tems, in order to help elucidate whether to include the f
electrons in the valence or treat them as semicore electrons
when using standard LDA. We find that in general, as was
suggested over ten years ago by Pethukov et al.,9 including
the strongly localized RE 4f electrons in the core is a satis-
factory approximation when f electrons are not directly in-
volved in the bond and the ionization energy of the 4f states
is large in comparison with the band gap. In particular, struc-
tural properties such as lattice constants or bulk moduli are
quite unaffected by the details of the method used to treat the
4f orbitals. We test our methods on both a bulk RE com-
pound and RE impurities: We choose ErN as representative
of the first class of systems and ErGa in GaN as representa-
tive of the second. Both examples are relevant for techno-
logical applications: ErN has been recently suggested as an
ideal magnetic refrigerator and regenerator for cryogenic
applications10,11 and as basis for spin filter devices �because
of its half metallicity�, while Er-doped GaN samples have
been successfully exploited �because of the sharp intra-f op-
tical transitions� for both the 1.54 �m telecommunications
frequency and as a primary color emitter �green� in thin film
electroluminescent phosphor systems.12 More generally, rare
earths are also promising candidates for the realization of
high Tc semiconductor spintronic devices.13,14 These are also
controversial systems: Pehtukov et al.9 found ErN to be a
semiconductor, while Duan et al.1 recently classified it as
half metal. We present here a characterization of ErN includ-
ing the electronic structure primarily in the ferromagnetic
�FM� phase, finding ErN to be a half metal.

This paper is organized as follows. In Sec. II, we outline
the spin-polarized self-consistent charge density functional
based tight-binding �SCC-DFTB� approach and its orbitally
dependent extensions �LDA+U and SIC-like�. In Sec. III, we
test the accuracy of the DFTB scheme for each approach
implemented �deriving data to compare with experimental
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measurements and ab initio calculations�. Finally, in Sec. IV,
we summarize and discuss the features of the approaches in
the framework of DFTB.

II. METHODS

A. Density functional based tight-binding approach

Despite its simplicity �a only two-center nonorthogonal
Hamiltonian is used�, the density functional based tight-
binding �DFTB� method scheme has been proven to be ac-
curate when applied to solid state,15 molecular, or biological
systems.16 Materials such as silicon,17 SiC,18 diamond,19 bo-
ron and boron nitride,20 and III-V semiconductors such as
GaN �Ref. 21� and GaAs �Ref. 22� have successfully been
studied within the DFTB approach.

The study of strongly correlated systems �such as RE or
transition metal containing compounds� requires somewhat
different techniques to the usual methods for the simulation
of solid state systems because of the nature of these atoms.
RE ions, for example, have atomic numbers of between 57
and 70; hence, relativistic effects become important. Addi-
tionally, many properties of transition metal or lanthanide
elements depend on the strongly correlated behavior of their
d or f electrons. Studying such cases requires a more sophis-
ticated theory than simple mean-field methods. To address all
of these additional complexities in treating lanthanides,
the DFTB method has been substantially extended. To
treat strongly correlated systems, LDA+U5,23 and
pseudo-SIC-like7,8 approaches have been adopted. We would
like to remark that �to our knowledge� DFTB contains the
published TB implementation of LDA+U and SIC-like
methods. The spin-polarized, charge-self-consistent DFTB
approach has been extensively discussed elsewhere;6,24 we
briefly review the method in the Appendix for completeness
and to introduce the notation used in Sec. II B.

B. Orbital-dependent potentials

In the density functional theory �DFT�, the exchange-
correlation potential is often approximated by using the ex-
change correlation present in a homogeneous electron gas
�LDA�, which has been proven to be very successful for
solids even if not all systems are equally well described.
Materials with strongly correlated electrons, however, are ex-
amples where this mean-field approach most strikingly fails.
LDA is, in fact, a one-electron method with an orbitally in-
dependent potential, and applying it to a system containing
transition metals �TM� or rare earths �REs� with partially
filled d or f shells gives results consistent with a metallic
electronic structure and itinerant d or f electrons, which is
definitely wrong for most RE compounds and several ex-
amples of TM systems �NiO being the classic example�.
Other choices for the exchange correlation such as general-
ized gradient �GGA� can also be applied, but as with LDA,
this is a mean-field correction for the noninteracting system
and so suffers from the same pathology. In the strongly cor-
related systems, the d or f electrons are often strongly local-
ized, and there is a noticeable energy difference between
occupied and unoccupied states with strong d or f character,

which are called lower and upper Hubbard bands, in analogy
with the Hubbard Hamiltonian approach. There have been a
number of attempts to go beyond the LDA and make it able
to account for strong electron-electron correlation in such
systems. The full self-interaction-corrected �SIC� approach3

can reproduce the localized nature of d and f electrons in TM
and RE compounds as well as the total energy of these sys-
tems but is not intended to reproduce the one-electron ener-
gies; additionally, SIC is known to overcorrect many
properties.25 As discussed in Sec. II E, there have also been
several recent attempts to approximate the effects of the SIC
method with �semi�local corrections. An alternative correc-
tion, the LDA+U approach, is conceptually similar to the
Hubbard Hamiltonian approach: the nonlocal and energy de-
pendent self-energy is approximated by a frequency indepen-
dent but nonlocal screened Coulomb potential.

C. LDA+U

As discussed by Anisimov et al.,26 it is natural to separate
electrons into localized d or f electrons and delocalized s and
p electrons. While for the latter an orbitally independent one-
electron potential �as in LDA� will suffice, a Hartree-Fock-
like interaction better describes the local interactions of the
strongly localized d or f electrons. This is of the form
1
2�i�jninj, where ni are the occupancies of the localized
shells. If we assume that the Coulomb energy of the electron-
electron interaction as a function of the total number of elec-
trons N=�ni is well represented by LDA �even if it gives
wrong single-particle energies�, then LDA already contains
part of this energy. This must be subtracted from the total
energy and instead replaced with a Hubbard-model-like term.
As a result, we get the functional27,28

E = ELDA −
1

2
UN�N − 1� +

U

2 �
i�j

ninj = ELDA + �ELDA+U.

�1�

Strictly speaking, the process of subtracting the double
counting of the electron-electron interaction of strongly cor-
related electrons from the LDA total energy and substituting
it with a Hubbard Hamiltonian-like term is not without am-
biguity. The electron-electron interactions have already been
taken into account in a mean-field way with LDA, while the
Hubbard Hamiltonian also incorporates a large part of the
total Coulomb energy of the system. One can try to identify
those parts of the DFT total energy corresponding to the
interactions included with the Hubbard Hamiltonian in order
to subtract them. This is not trivial, because while the Kohn-
Sham Hamiltonian is written in terms of the total density, the
Hubbard Hamiltonian is written in terms of orbital occupa-
tion numbers, and a direct link between the two is not
straightforward. Secondly, even if it were possible to exactly
remove the on-site Coulombic contribution in the LDA and
Hartree contributions, it would be undesirable, as the spatial
variation of the Coulomb and exchange-correlation potential
is important and is better described in DFT than in the Hub-
bard approach. It is instead better to try and identify a mean-
field part of the Hubbard Hamiltonian and subtract that, leav-
ing only a correction to the LDA solution.
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In the limit of uniform occupancy �all occupations equal
to the average value in that shell�, the corrections for total
energy and potential can be written in terms of on-site occu-
pation matrices �n� as29

�EAMF = −
1

2�
a

�
l�a

�U − J�l�
�

�
��

��n��
� · �n��

� ����l, �2�

�V��
� = − �U − J��n���l

� , �3�

where U is the spherically averaged Hubbard repulsion and J
is the intra-atomic exchange. �n, the orbital occupation ma-
trix, is given by

�n��
� = n��

� − n̄��
� ���.

Here, ��� “masks out” elements off the diagonal of the
average occupation matrix n̄��

� , the effect being to return a
matrix shifted by the average occupation. In the “around
mean-field” �AMF� limit, the LDA+U correction to the elec-
tronic potential averaged over all occupied states is, in a
given shell, zero; this is a possible way to define a mean
field. For strongly correlated systems �or in the presence of a
crystal and/on ligand field�, the limit of uniform occupancy
is not correct and the AFM functional leads to rather unreal-
istic results for strongly localized electrons. This has led to
the suggestion of another correction which produces the cor-
rect behavior in the fully localized limit �FLL� where the
eigenvalues of n��

� are either 0 or 1,

�EFLL = −
1

2
�U − J��

�
�
A

�
��

��n��
� �2 − n��

� ����l�A, �4�

�V��
� = − �U − J��n��

� −
1

2
����

���l�A
. �5�

AMF and FLL correct the mean-field double counting if
the occupation numbers are, respectively, all equal or only 0
or 1. Most of the modern LDA+U calculations rely on one
of these two functionals, although in real materials, the oc-
cupation numbers should lie between these two limits; hence,
neither AMF nor FLL is strictly speaking correct for real
systems, and one should therefore use an interpolation be-
tween the two limits.28 However, AMF and FLL will bracket
the correct values.

D. LDA+U-like approach in density functional based
tight binding

While it has previously been suggested that for empirical
tight binding the effects of on-site correlation can be mim-
icked by an empirical adjustment of symmetry resolved on-
site energies,30 this is problematic, for example, for low sym-
metry d electron systems or for f manifolds. In the RE ions
of interest here, the so-called fully localized limit should be
achieved �i.e., the orbital occupations of states localized
within the 4f manifold should either be 0 or 1 �Refs. 27 and
28��. However, we also wish to test the AFM-like limit as
well.

In the simplest rotationally invariant form of LDA+U,31

the correction to the LDA potential is of the form

�V��
� = − �U − J�l�n��

� − DC�n��
� �����l. �6�

where n� is the local spin occupation matrix within a given
atomic manifold, and �U−J� is the screened and spherically
averaged electron-electron interaction. DC�n� is the double
counting term, and the two limiting cases FLL and AMF are

DC��
� �n�FLL =

1

2
���,

DC��
� �n�AMF =

Tr�n���
2l + 1

���,

Where l is the angular quantum number. �U−J� is usually
taken to be either an adjustable parameter or from a con-
strained DFT calculation. We instead present a prescription
for choosing U and J from atomic calculations. Since the
DFTB energy aims to be a reasonable approximation to the
LDA energy, it seems sensible to adopt the form of the
LDA+U energy correction unchanged for DFTB. There is
then the issue of how to choose the on-site occupation
matrix32 for a nonorthogonal basis. In the on-site case, the
modification to the total energy and the DFTB Hamiltonian
can be written in terms of atomic sub-blocks of the single-
particle density matrix �����l�A�, while for the dual basis
case, the occupation matrix takes the form of a generalization
of Mulliken charges:

n��l�A,��l�A
� =

1

2�
B

�
��B

�S����� + ���S��� , �7�

where the diagonal of the resulting occupation matrices is
then basis-function resolved Mulliken charges.

E. Pseudo-self-interaction-corrected-like approach in density
functional based tight binding

Full self-interaction-corrected �SIC� LDA is relatively ex-
pensive; hence, several cheaper approximations have ap-
peared. We adopt in DFTB an approximation of the full SIC
based on the method proposed by Vogel et al.7 and its recent
refinements,8,33 which is referred to as pseudo-SIC �or pSIC�
as it only includes contributions near to atoms. Since the
majority of the self-interaction error, in the case of interest, is
local in character, this hopefully captures the majority of the
error. To ensure that for single electrons the Coulomb and
exchange-correlation terms are canceled out exactly, the
exchange-correlation potential is modified by subtracting off
the local self-interaction in this basis:

�V�,pSIC
� = − 	V�,H+XC

� �n��r�,m��r�� . �8�

To make calculations of the potential tractable, VH+XC is
approximated as that for a single, fully occupied and com-
pletely spin-polarized state VH+XC

� �n�r� ,m�r��=VH+XC
� �1,1�.

The prefactor 	 allows an additional scaling of the potential,
for example, to account for electronic relaxation on electron
removal �	= 1

2 in the work of Filippetti and Spaldin; how-
ever, this is incorrect for a system with a single electron33�.
As yet, no energy expression related by variational principle
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to the potential is available;8,33 hence, no expression for in-
teratomic forces has been derived. In the following, we will
derive such an expression from similarities between the
LDA+U and pSIC formalism. Equation �8� is not invariant
to unitary transforms; however, similar to the original LDA
+U formalism,23 this can be achieved by using the density
matrix formulation,

�VpSIC��

� = − 	VH+XC
� �1,1�n��

� . �9�

Considering, as previously, a fully occupied and com-
pletely spin-polarized state, we can write �due to the similar-
ity in the functional of the potential to LDA+U� in matrix
form an energy expression �which is directly connected to
the potential� as

�EpSIC = − 	�
�

VH+XC
� �1,1�Tr�n� · n�� . �10�

In these approximations, pSIC is written as a type of non-
double counted LDA+U �i.e., DC�n� is absent from Eq. �6��,
without ambiguity in the choice of �U−J�, since the prefac-
tor comes from the exchange-correlation potential. Addition-
ally, atomic forces can be derived.32 This has some similarity
to the atomic SIC �or ASIC� form of Pemmaraju et al.;33

however, they do not provide a variationally connected
energy.

F. Connection between LDA+U and
pseudo-self-interaction-corrected

In the following, we will discuss a connection between
LDA+U in its FLL version and pSIC that allows a further
simplification of the latter approach in a tight-binding
scheme. The starting point of this discussion is Eq. �44� of
Anisimov et al.,26 relating the atomic Slater integral F0 and
the exchange J to the LDA potential for an atomic state as

VH+XC
� = F0N −

1

2
�F0 − J� − JN�. �11�

Thus, for the orbital occupation choices for which VH+XC
is needed in pSIC �VH+XC�1,1�, i.e., N=N�=1�, the spheri-
cally symmetric part of the exchange-correlation potential is
given by

VH+XC
� �1,1� =

F0 − J

2
.

In DFTB, we use U in the SCC-DFTB correction �see the
Appendix� that is related to the screened F0 Slater integral.26

If we, moreover, assume in the zeroth limit that screening in
the isolated atom, for which U is calculated, is small, F0 can
be substituted by U. Similarly, the diagonal part of the spin
coupling matrix Wll��ll�, given in the Appendix, is equivalent
to Jl. We thus obtain, for the basis that is used to expand the
local states in pSIC,

VH+XC
� �1,1� �

�U − J�atomic

2
. �12�

In this approximation, pSIC then gives a contribution to
the potential of

�pSIC��V��
� = − 	

�U − J�atomic

2
n��

� . �13�

For a system with a Hubbard gap, the relaxation-corrected
form of pSIC �	= 1

2
� would apply the same potential to the

lower Hubbard band as obtained by a FLL-LDA+U contri-
bution of

�FLL��V��
� = −

�U − J�atomic

2
�n� −

1

2
� . �14�

Since the eigenvalues of the n� matrix are either 0 or 1, the
occupied states in the local manifold experience a net down-

ward shift of −
�U−J�atomic

4 . This suggests, in comparison with
Eq. �5�, that the LDA+U and relaxation-corrected pSIC have
the same effect on the occupied band structure and that �U

−J�=
�U−J�atomic

2 is a sensible first choice for the parameters in
LDA+U. This agrees with the �empirical� choice of �0.5

 �U−J�atomic being suitable for many LDA+U
applications.26,29 Since there are different potentials for un-
occupied states in pSIC and FLL-LDA+U, these methods
give different gaps,33 and different total energy corrections
�compare Eqs. �4� and �10��.

All of the above corrections share the feature that they are
semilocal �decaying on the length scale of the overlap matrix
in the dual basis form�; hence, they cannot fully address
nonlocal effects such as the derivative discontinuity in Kohn-
Sham theory.34,35

III. RESULTS AND DISCUSSION

A. ErN

ErN is a good test system for our methods because it is a
standard representative of a class of materials �the RE
monopnictides� which have attracted much recent attention
due to their peculiar characteristics. Particularly interesting is
the fact that despite their simple rock salt structure �common
to most of the RE monopnictides�, the RE-N compounds
show a variety of electrical and magnetic properties,9 includ-
ing ferromagnetic behavior, extremely low Curie and Néel
temperatures, and an unusual 	111
 spin orientation. Their
suitability for epitaxial growth on several semiconductors
has made them interesting materials for the realization of
electronic and spintronic devices. ErN has not been as exten-
sively investigated as other Er pnictides �such as ErAs� or
other RE nitrides �such as GdN�, but there is a substantial set
of experimental data in the literature �see Refs. 10 and 11
and references therein� as well as several theoretical
investigations1,9,36–38 of this material. It is only recently1,36

that a consensus has been reached about its half-metallic
character, i.e., ErN shows a finite density of states at the
Fermi level for one spin channel and a zero density of states
for the other. In some earlier works,37 ErN was described as
a metal, while in others,9 it was found to be a semiconductor
in both ferromagnetic and paramagnetic �PM� phases. Unlike
the other Er pnictides, in the ground state, ErN is a ferromag-
net with a magnetic transition at 3.4–6 K.39,40

We investigated the FM and the PM magnetic phases.
While it is clear that using a primitive ErN cell a spin-

SANNA et al. PHYSICAL REVIEW B 76, 155128 �2007�

155128-4



polarized calculation will be a sensible representation of the
FM phase �or the saturation limit of the PM phase in a mag-
netic field�, to simulate the PM phase we adopt a crude vir-
tual crystal approximation. Following the considerations of
Pethukov et al.,9 we consider a non-spin-polarized calcula-
tion as representative of the paramagnetic phase. This is a
very drastic approximation; a proper treatment of the PM
phase would require the consideration of thermal fluctuation
effects and knowledge of the magnetic phase diagram. How-
ever, this approximation gives us the possibility to compare
our results with literature9 and suffices for the goal of this
work, which is to present our methods.

We find the difference in the cohesive energy �defined as
energy difference of free Er and N atoms in their spin polar-
ized state� of the PM and FM phases to be, independent of
the particular calculation approach, about 0.5 eV per atom,
which is somewhat higher than the difference reported by
Pethukov et al.9.

Like other RE nitrides ErN is9,36 characterized by ionic
bonding; however, the equilibrium distance41 �2.432 Å� of
Er and N in the compound is only 0.1 Å longer than the sum
of the covalent radii of Er �1.57 Å� and N �0.75 Å�. The Er
ions in ErN are trivalent, existing in the +3 oxidation state,
corresponding to an outer electronic configuration for the Er
ions of �Xe� 4f11, with a full f semishell containing seven
spin up electrons and an half filled f semishell containing
four spin down electrons. This was verified with all spin-
resolved approaches implemented in DFTB. Eleven of the 12
f electrons remain strongly localized while the remaining
one is delocalized, in agreement with the results of Temmer-
man et al.42 who predict the existence of two kinds of f
electrons, localized and delocalized, whose relative numbers
change depending on the RE.

All ErN calculations in this work were performed using
the rocksalt primitive cell and a 12
12
12 Monkhorst-
Pack k-point mesh.43 The U in the LDA+U approach is not
considered as a free parameter as in our earlier work.44 As
discussed in Sec. II F, we use half of the atomic U−J value
of the Er 4f shell. U and J were calculated for the atom using
Janak’s theorem. The U−J value of 7.6 eV we use is consis-
tent with that used in similar simulations.45 The +U poten-
tials are applied only to the f shells.

We start our ErN characterization with the determination
of the lattice parameter. It is interesting to see how this is
influenced by different methods. As the LDA-like approach
in DFTB already gives relatively accurate results for ErN,
one expects LDA+U to overestimate the ErN lattice con-
stant. This is verified, even if the difference between LDA
and LDA+U is less than 2% of the lattice constant �See
Table I�.

In the same table, reported are the values of the bulk
moduli and their first derivative �with respect to the pressure�
calculated with different approaches. The values we have
are, on average, slightly larger than that calculated by
Pethukov et al.9 but still within the typical error of the DFTB
method. We observe that the application of the AMF and
FLL approaches leads to a great improvement in the descrip-
tion of the bulk modulus �and a small worsening in the de-
scription of the lattice constant�, while the pSIC approach
improves the description of the bulk modulus without lost of

precision in the description of the lattice constant. The cal-
culated values for the first derivative of the bulk modulus,
which is a delicate parameter for both theoretical simulation
and experiment, are around the experimental value for all the
approaches. While the calculated values of the bulk modulus
come close to the experiment with the application of orbital-
dependent potentials, it does not seem to lead to major ad-
vantages in the description of B�.

As already mentioned, ErN is ferromagnetic in the ground
state, and the results reported here are for this magnetic
phase. The local �spin� density approximation �L�S�DA�-like
picture is not adequate for the simulation of ErN as it shows
the narrow bands deriving from the f states pinned at the
Fermi level, which is incorrect for this material. Orbital-
dependent approaches such as DFTB+U �both in the AMF
and FLL limits� instead find ErN in the FM phase to be a half
metal, in agreement with Aerts et al. and Duan et al. �see
Fig. 1�. As in the previously mentioned works, the paramag-
netic phase has been simulated by the spin unresolved
LDA+U approach: in this case, in both the AMF and FLL
limits, ErN is then a narrow-gap semiconductor.

B. Substitutional ErGa

As a further test application to check the validity of our
calculational methods, we chose to investigate in some detail
the Er substitutional REGa in hexagonal �wurtzite� GaN, pay-
ing particular attention to the density of states �DOS� and
stressing the differences between a classic LDA-like and the
LDA+U approach. ErGa can be used for testing since the
REGa substitutionals are the simplest stable lanthanide de-
fects in GaN and have been already studied both experimen-
tally and theoretically.46–48 Er:GaN based light emitting
diodes49 have stimulated many experimental attempts to
understand58 the mechanisms underlying the emission from
Er-doped samples and to exploit51–53 and improve54,55 the
emission itself. From experimental studies, we know that Er
ions in GaN prefer the Ga position,56 occur in 3+ valence
state49 and possess C3v symmetry57 with relatively short dis-
tances to the surrounding N ligands.58

We first discuss the geometry of the defect. Two DFTB-
parameter sets have been created for the simulation of RE in
GaN: in one, the Ga 3d orbitals are treated as valence and in
the other, as core. We report here results obtained not includ-

TABLE I. Lattice constants and elastic parameters calculated
with the different approaches implemented in DFTB for the FM
phase of ErN. Dev. stands for the deviation of the calculated from
the experimental value.

Method
Lattice constant

�Å�
Dev.
�%�

B
�GPa� B�

Expt. 4.839a 220.259 4.3

DFTB 4.895 1.1 272.14 3.5

DFTB+U FLL 4.969 2.7 231.40 4.7

DFTB+U AMF 4.919 1.7 224.02 6.7

DFTB pSIC 4.892 1.1 264.20 3.0

aReference 41.
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ing the Ge 3d in the valence. Results obtained including the
Ga 3d orbitals do not differ substantially and have been re-
ported in a previous publication.59 Supercells containing 256
atoms and a 4
4
4 Monkhorst-Pack k-point sampling
were used to calculate the data reported here. The supercells
have been relaxed in different spin configurations to find out
the one that minimizes the total energy. The substitutional
ErGa is found to have the C3v symmetry. The Er ion is, in
fact, surrounded by four N atoms, one �identified by the label
Er-N1 in the Table II� being slightly more distant from the Er
ion than the other three �Er-N1 in the Table II�. According to

the C3v symmetry, the Er second neighbors can be similarly
divided in two groups �called Er-Ga1 and Er-Ga2 in Table II�.
The symmetry is a particularly important parameter in the
investigation of the RE defects, both because it can be mea-
sured experimentally and also because it is known that the
intensities of intra-f transitions are enhanced by lowering the
symmetry. For example, the symmetry difference between
Eu and Tb substitutionals in GaN is believed to be the cause
of the higher relative luminescence intensity of Eu-doped
GaN, as suggested by Bang et al.60 We find that the Er sub-
stitutional, after geometry optimization, sits on-site; the cal-
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FIG. 1. �Color online� Spin-resolved band structure of rocksalt ErN calculated with the SDFTB �first row� and SDFTB+U FLL and
SDFTB+U AMF �second and third rows� approaches.
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culated geometry in the neighborhood of the substitutional is
reported in Table II together with experimental measure-
ments and other theoretical results. The calculated values are
in good agreement with the experimental measurements, and
the lattice distortion has values very close to previous
pseudopotential LDA calculations.46 Different orbital-
dependent calculation schemes do not really influence the
system geometry. Apart from the relatively small compres-
sive stress in the neighborhood of the defect �Er is a bigger
ion than Ga with covalent �3+ ionic� radii of 1.57 �1.03� and
1.26 �0.62� Å, respectively�, no other effects on the host ge-
ometry are observed. The compressive stress, estimated by
the ratio between the Er-N bonds and the Ga-N bonds in the
bulk, is reported in the last column of Table II. Already the
classic LDA formulation of the DFTB approach provides
Er-N bond lengths in good agreement with experimental
data. The LDA+U, like and pSIC implementations, leads to
small changes only. In other words, relaxing the structure
with or without the contributions of the orbital-dependent
potentials anyway does not substantially change the geom-
etry of the system and influences only slightly the bond
lengths: Bond lengths calculated with and without the
orbital-dependent potentials differ at most by 0.03 Å �see
Table II�.

Let us consider now the electronic properties of the Er
substitutional. We report here, for convenience, only results
obtained with the FLL approach. The substitutional ErGa is a
representative example, because all of the midseries RE sub-
stitutionals behave in a similar way. Reference calculations
were executed with the ab initio all electron code WIEN2K.61

In the Fig. 2, the band structures of the substitutional ErGa
calculated with DFTB and DFT are reported. With LSDA/
spin-DFTB �SDFTB�, the GaN original band gap �3.5 eV in
DFTB, 2.2 eV in WIEN2K� remains more or less unchanged
on addition of the RE, while in the middle of the gap, there
appears a group of very localized f-related levels. As with
ErN, these levels are filled with seven up and four down
electrons, which are considered to be trivalent in comparison
with the isolated atomic occupations. The corresponding
DOS is reported in Fig. 3 where the DFTB calculations ap-
pear on the upper part, while the WIEN2K reference calcula-
tions are reported for comparison in the lower part. For con-
venience, data reported in Figs. 2 and 3 were calculated
using smaller 72-atom supercells.

When we apply the +U potential �see Figs. 3 and 4� to the
f shell, the occupied states are pushed downward into the
valence band and the empty states are pushed upward into
the conduction band, leaving the original band gap com-
pletely empty. A detailed discussion about the interpretation
of this clear gap can be found in Ref. 62 and references
therein. The DOS changes are consistent with what is ob-
served for the band structure: The f-related peak in the band
gap is removed, leaving the GaN band gap free again. This is
in agreement with the paper of Filhol et al.,46 where they
found that simple RE substitutionals do not induce localized
states in the band gap �in their case, they investigated this
only for non-4f-related states, however�. In Fig. 4, the DOSs
for the studied system calculated with WIEN2K and with
DFTB are shown to be in very good agreement. In this situ-
ation, a simple LDA-like approach treating the f electrons as
corelike electrons produces the same results of a more so-
phisticated approach with a physical handling of the f elec-
trons.

In Fig. 4, we also report the DOS calculated with the
pSIC approach as implemented in DFTB. The pSIC poten-

TABLE II. Bond lengths �Å� and local strain around the C3v ErGa substitutional in hexagonal GaN. For
the definition of the entries in the table, see text. The local strain is defined as the ratio between the Er-N1

bonds and the Ga-N1 bonds in the bulk. For further details, see the individual references.

Er-N1 Er-N2 Er-Ga1 Er-Ga2

Strain
�%�

DFTa 2.13 2.16 3.22 3.26

Expt.b 2.17 2.17 3.26 3.26

DFTB 2.15 2.17 3.32 3.35 11.6

DFTB+U FLL 2.18 2.20 3.28 3.38 13.1

DFTB+U AMF 2.17 2.19 3.29 3.37 12.6

pSIC DFTB 2.17 2.18 3.29 3.36 12.6

aReference 46.
bReference 50.

FIG. 2. Volume slice of the magnetization density in the �100�
plane of rocksalt ErN in the ferromagnetic phase. The axis labels
are expressed in Å and the hue �in arbitrary units� the electronic
density. The unpaired electrons are localized on the Er atoms.
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tials shift occupied states downward but do not act on the
empty ones. If we apply the pSIC potentials only on the f
shells �similar to the usual LDA+U treatment�, the shift of
the occupied f states is the same as in FLL, as already ex-
pected by Eqs. �13� and �14�, whereas the positions of the
unoccupied states remain unchanged. However, SIC is usu-
ally applied to all occupied orbitals, as shown in the second
box in Fig. 3. In this case, due to the interactions of all the
SIC-corrected states, the splitting between occupied and un-
occupied f levels is reduced. Furthermore, the unoccupied f
states are slightly shifted to higher energies.

So far, we have neglected in our discussion the effects of
spin-orbit coupling; however, we have also carried out pro-
visional calculations in the case of Er using the methodology
outlined in Ref. 77 in addition to the LDA+U-like treatment
for DFTB. Using spin DFTB and a 4f spin-orbit constant of
2234 cm−1, with the Er magnetic moment in the a plane,63

we find that the sevenfold degenerate localized gap levels
shown in Fig. 2 in the gap are split into four filled and three
empty nondegenerate levels which remain in the gap span-
ning a range of �700 meV. Applying the FLL-LDA+U ap-
proach and the same constant for the spin-orbit splitting
ejects these states from the gap, demonstrating that in this
case correlation has a larger effect than spin-orbit coupling.
The possibility of acceptor or donor states was not investi-
gated in this work, since all calculations was performed with
neutral supercells.

IV. SUMMARY

We have presented a parametrization for the simulation of
RE doping in GaN in the framework of the SCC-DFTB. The
capability of this method to perform spin-polarized calcula-
tions and to treat strongly correlated systems with
LDA+U-like approaches makes DFTB a powerful tool for
the simulation of RE systems as well as other strongly cor-
related systems. The DFTB Er/Ga/N parametrization was
tested for two different systems, RE nitrides and the substi-
tutionals ErGa in GaN. Properties such as geometries, band
structures, and density of states were tested against experi-
mental measurements and DFT calculations and show good
agreement between our simulations and existing data. The
accuracy of the parameters and the efficiency of this method
allow the investigation of extended systems and the system-
atic sampling of many configurations for defect physics and
chemistry.
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APPENDIX: SPIN-POLARIZED DENSITY FUNCTIONAL
BASED TIGHT BINDING

In the SCC-DFTB approximation, the expression for the
total energy of a system of M atoms in the Kohn-Sham64,65

�KS� formulation of the spin DFT is expressed expanding the
charge density n�r� around a reference charge density of
n0�r�:

n�r� = �
�=↑,↓

�
i

N

ni,���i,��2 = n0�r� + �n�r� , �A1�

with �n�r� being the difference between the reference charge
density used in parametrization and the charge distribution in
the system. The system magnetization is also expanded
around the spin-unpolarized atomic case which has �per defi-
nition� a magnetization density of zero:

m�r� = m0�r� + �m�r� with m0 = 0. �A2�

Introducing the abbreviations n, n0, �n, and �m for n�r�,
n0�r�, �n�r�, and �m�r� and with a little algebra, the expres-
sion for the DFTB total energy of the system is written as

Etot =
�
σ=↓,↑

occ�
i

niσ�ψiσ| −
∇2

2
+ vext +

�
n′

0

|r− r′|
d3r′ + vxc [n0, 0]� �� �

Ĥ0[n0,0]

|ψiσ�

+ ENN + Exc [n0, 0] −

�
vxc [n0, 0]n0d

3r −
1

2

��
n0n

′
0

|r − r′|
d3rd3r′� �� �

Erep

+
1

2

�� �
1

|r − r′|
+

δExc

∆n∆n′

����
n0,0

	
∆n∆n′d3rd3r′� �� �

Eδn

+
1

2

�
δ2Exc

δm2

����
n0,0

∆m2d3r� �� �
Eδm �A3�

as explained in Ref. 66. In this equation, Ĥ0�n0 ,0� and Erep only depend on the reference density, while E�n and E�m include
fluctuations of the charge and magnetization densities.

-9 -6 -3 0 3 6 9

0
10
20
30
40
50

D
O

S-
Sp

in
do

w
n

(S
ta

te
s/

eV
ce

ll)

0
10
20
30
40
50

D
O

S-
Sp

in
do

w
n

(S
ta

te
s/

eV
ce

ll)

0
10
20
30
40
50

D
O

S-
Sp

in
do

w
n

(S
ta

te
s/

eV
ce

ll)

-9 -6 -3 0 3 6 9
Energy (eV)

0
10
20
30
40
50

D
O

S-
Sp

in
do

w
n

(S
ta

te
s/

eV
ce

ll)

DFTB-LDA

DFTB-pSIC

DFTB-pSIC (only f)

DFTB-FLL

O
ccupied

f-states
O

ccupied
f-states

O
ccupied

f-states

E
m

pty
f-states

E
m

pty
f-states

E
m

pty
f-states

E
m

pty
and

occupied
f-states

-9 -6 -3 0 3 6 9

0

10

20

30

40

50

D
O

S
-

Sp
in

do
w

n
(S

ta
te

s/
eV

ce
ll)

-9 -6 -3 0 3 6 9
Energy (eV)

0

10

20

30

40

50

D
O

S
-

Sp
in

do
w

n
(S

ta
te

s/
eV

ce
ll)

LSDA

LSDA+U

E
m

pty
and

occupied
f-states

E
m

pty
f-states

O
ccupied

f-states

FIG. 4. ErGa in the neutral charge state in wurtzite GaN. Spin-
resolved DOS calculated with the different approaches implemented
in DFTB �upper box� and with LDA and LSDA+U as implemented
in WIEN2K �lower box�. The arrows show the position of the
f-related peaks. We only show the spin down electrons, as the spin
up are occupied and included in the valence band. In the LDA+U
and pSIC calculations, the f-related peak visible in the band gap is
split into two parts, and the rest of the structure remains almost
untouched. The valence band maximum was chosen in each case as
zero of the energy scale.
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1. Zeroth-order Hamiltonian

The zeroth-order Hamiltonian contribution to this expres-

sion �Ĥ0�n0 ,0�� is derived expanding the spin orbitals of the
reference system as a linear combination atomic orbitals:

��i�
 = �
�

c�i�����r − RA�
, � � A . �A4�

The basis function ���r−RA� is centered on the atomic
nucleus A, with position RA. The spin is included in the
coefficients c�i� of the expansion. The basis functions ���r�
are themselves a linear combination of Slater orbitals. The
coefficients of the expansion are calculated from neutral,
spin-unpolarized, and spherically symmetric pseudoatoms,
which are described by a modified relativistic single atom
Dirac equation67 and to which an additional harmonic con-
fining potential is added. Inserting Eq. �A4� into Eq. �A3�,
we can derive

	�i��Ĥ0�n0,0���i�
 = �
�,�

c�i�
* c�i�Ĥ��

0 �n0,0� , �A5�

where the Hamiltonian matrix elements are calculated only
for the valence electrons in a minimal basis within a two-
center approximation. Neglecting crystal field and three cen-
ter terms,

H��
0 = �

free atom if � = � and A = B

	��
A�T + VA

0 + VB
0 ���

B
 if A � B

0 r � rcutoff,
�

�A6�

where the � are the eigenvalues of the �uncompressed�
atomic Kohn-Sham orbitals,68 and Veff is the effective Kohn-
Sham potential �Coulombic plus exchange correlation� for

atoms A and B.69 The Hamiltonian Ĥ��
0 and overlap matrix

elements �S��= 	�� ���
� are calculated only once and tabu-
lated as function of the interatomic distance between A and
B. Then, by following the method of Slater and Koster70 and
its extension to the f shell,71,72 this is used to generate the
two-center H0. The values of the matrix elements in each
particular calculation are computed by interpolating the tabu-
lated data.73

2. Fluctuation dependent contributions to the energy

It has been shown66,74 that using the Mulliken charges,

qAl� =
1

2�
i=1

occ

ni� �
��A,l

�
�

c�i�
* c�i�S��, �A7�

to write the charge density fluctuations as sum of atomic
contributions compared to a reference charge distribution �q0

which is chosen from the limiting isolated atomic case�,

�qAl = � �
�=↑,↓

qAl�� − qAl
0 �A8�

�where l labels the orbital, A the atom, and � the spin�, the
term in E�n �Eq. �A3�� can be written �in an l-shell resolved24

monopole approximation� as

E�n =
1

2�
A

M

�
B

M

�
l�A

�
l��B

�qAl�qBl��Al,Bl�, �A9�

where �Al,Bl� is an analytical74 function of the interatomic
distance between atom A and atom B, which approximates
the Hartree and �spin-unpolarized� exchange-correlation con-
tributions from the charge fluctuations. The chosen form of �
depends on the quantities

UAl =
�l

�nl
, �A10�

which can be considered as a generalization of the Hubbard
model U values. In a similar way, writing the magnetization
fluctuation compared to the unpolarized reference ��m� as
sum of atomic contribution, in the framework of the mono-
pole approximation, the term E�m in Eq. �A3� can be
written66 as

E�m =
1

2�
A

�
l�A

�
l��A

�mAl�mAl�WAll�, �A11�

where the Wll� are atomic constants defined as

Wll� =
1

2� �l↑
�l�↑

−
�l↑
�l�↓

� �A12�

and the magnetization fluctuations in the Mulliken popula-
tions compared to the spin unpolarized reference system are

�mAl =
1

2�
i=1

occ

ni� �
��A,l

�
�

�c�i↑
* c�i↑S�� − c�i↓

* c�i↓S��� ,

�A13�

with the up and down coefficients labeled by arrows.

3. Repulsive contribution

The terms collected together as Erep in Eq. �A3� are not
calculated separately, although this is, in principle, possible,
but merged into one repulsive pair potential Urep��RA−RB��,
in the spirit of empirical TB.75 This potential only depends
on atomic separation and species and is evaluated as the
difference between the Kohn-Sham DFT total energy and the
electronic part of the DFTB energy. For each chemical com-
bination of atom pairs in our system, we have

Urep��RA − RB�� = Etot
KS��RA − RB�� − Eel

DFTB��RA − RB�� ,

�A14�

and the sum over all the atom pairs in the system gives the
repulsive part of the energy:

Erep =
1

2�
A,B

Urep��RA − RB�� . �A15�

For each combination of atomic species, the pair repulsive
potential Urep��RA−RB�� is calculated for a fit system in a
chosen interval of interatomic separations and tabulated.
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4. Total energy and potential

The expression for the total energy within the spin-
polarized DFTB approximation is then the sum of four con-
tributions:

Etot = �
�=↓,↑

�
i

occ

ni�	�i��Ĥ0�n0,0���i�
 + E�n + E�m + Erep.

�A16�

The Hamiltonian operator of zeroth order depends only on
the reference density, the second term on fluctuations in the
Mulliken charges, �qAl, compared to the parametrizing ref-
erence system, the third from the spin polarization �through
the Mulliken spin population �mAl�, and the fourth term, the
repulsive potential Erep, depends only on the atomic coordi-
nates and species. Applying the variational principle to Eq.
�A16� for the total energy, we get19,74 a secular equation for
the coefficients c�i� of the wave functions:

�
�

c�i��Ĥ��� − i�S��� = 0, �A17�

with Hamiltonian matrix elements

Ĥ��� = Ĥ��
0 +

1

2
S���

C

M

�
l��C

��A���l���,Cl� + �B���l���,Cl���qcl�

+ ��

1

2
S��� �

l��B���

WB���l���l��mB���l�

+ �
l��B���

WB���l���l��mB���l�� �A18�

and overlap matrix elements

S�� = 	�����
 . �A19�

Here, we have used the symbol ��= ±1 for the up and down
electrons, respectively. Note that this expression slightly dif-
fers from that reported in the earliest form of spin-resolved
DFTB66 as the one-center spin approximation in the potential
has been dropped.76 The Hamiltonian matrix elements in the
Eq. �A18� depend, through the Mulliken spin populations, on
the wave function coefficients c�i�; therefore, the problem
must be solved self-consistently.
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