Picture of server farm and IT infrastructure

Where technology & law meet: Open Access research on data security & its regulation ...

Strathprints makes available Open Access scholarly outputs exploring both the technical aspects of computer security, but also the regulation of existing or emerging technologies. A research specialism of the Department of Computer & Information Sciences (CIS) is computer security. Researchers explore issues surrounding web intrusion detection techniques, malware characteristics, textual steganography and trusted systems. Digital forensics and cyber crime are also a focus.

Meanwhile, the School of Law and its Centre for Internet Law & Policy undertake studies on Internet governance. An important component of this work is consideration of privacy and data protection questions and the increasing focus on cybercrime and 'cyberterrorism'.

Explore the Open Access research by CIS on computer security or the School of Law's work on law, technology and regulation. Or explore all of Strathclyde's Open Access research...

Minimum uncertainty states of angular momentum and angular position

Pegg, D T and Barnett, S M and Zambrini, R and Franke-Arnold, S and Padgett, M (2005) Minimum uncertainty states of angular momentum and angular position. New Journal of Physics, 7. -. ISSN 1367-2630

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The states of linear momentum that satisfy the equality in the Heisenberg uncertainty principle for position and momentum, that is the intelligent states, are also the states that minimize the uncertainty product for position and momentum. The corresponding uncertainty relation for angular momentum and angular position, however, is more complicated and the intelligent states need not be the constrained minimum uncertainty product states. In this paper, we investigate the differences between the intelligent and the constrained minimum uncertainty product states for the angular case by means of instructive approximations, a numerical iterative search and the exact solution. We find that these differences can be quite significant for particular values of angular position uncertainty and indeed may be amenable to experimental measurement with the present technology.